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1 Executive Summary 

This deliverable documents the development and application of 11 national-scale CO2- and/or 
CH4-focused inversion systems targeting the emissions of European countries and the USA, 
carried out within Task 4.4 of the CoCO2 project. The aim of this inverse modelling effort was 
to document the current strategies and capabilities to separately control the anthropogenic 
emissions and biospheric fluxes of CO2 (and, to a lesser extent, CH4) with relatively high-
resolution inversion systems. It also aimed to provide support and guidance for the design of 
national operational systems and the regional-scale setup of the multi-scale inversion system 
for the CO2MVS. The work in this task led to improvements of current inversion systems and 
to the development of new regional inversion capabilities. In particular, the focus on the 
separate control of the CO2 anthropogenic emissions was a major innovation, which is 
important to advance the potential of the regional inverse modelling of CO2 in Europe.  

The participating systems varied in terms of maturity, with some models having been applied 
to CO2 inverse modelling for the first time. The inversions operated at different resolutions 
(between about 0.5° and 10 km) and covered different regions and countries, with the general 
ambition of having at least two models covering the same country. 

The results demonstrate that major challenges are associated with the lack of maturity of some 
of the most recent inverse modelling components: the separate control of the CO2 
anthropogenic emissions, the co-assimilation of co-emitted species, the co-assimilation of 
surface and satellite CO2 observations, and the underlying characterization of the fine-scale 
uncertainties in the inventories of the anthropogenic emissions of CO2 and co-emitted species 
used as prior estimates for the inversions. The set of inversions reveal a lack of constraint on 
the CO2 anthropogenic emissions at the monthly to annual and national scale when using the 
existing in-situ and satellite observations. The co-assimilation of CO and NO2 data does not 
significantly increase this constraint. In parallel, there is a large spread in the estimates of 
biogenic CO2 fluxes (and of the anthropogenic and natural CH4 fluxes) across the different 
systems, or when assimilating surface versus satellite observations. The analysis of the results 
suggests that the use of spatial resolutions finer than 10 km for the transport modelling and 
control of the fluxes is advisable if targeting CO2 anthropogenic emissions. Furthermore, a 
systematic analysis of the inverse modelling components that are responsible for the spread 
of the results across the inversions is recommended. 

2 Introduction 

2.1 Background 

The parties of the Paris Agreement are individual countries, which need to report their 
emission reduction ambitions and their actual emissions on a regular basis. Supporting the 
countries with top-down estimates at the national scale will therefore be a critical component 
of the future CO2MVS. 

Task 4.4 of WP4 supported the development, optimization and testing of national-scale 
inversion systems complementing the global system of ECMWF. The analysis with these 
systems should also provide insights for the configuration of the CO2MVS multi-scale 
inversion system, which will have to tackle the corresponding scales. The advantage of these 
regional systems is that they can run at higher resolution and incorporate more detailed, 
country-specific information. The main goal was thus to evaluate the potential of limited-area 
models to monitor national to regional (in the administrative sense) budgets of anthropogenic 
CO2 and/or CH4 emissions. 
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A total of 11 modelling systems were set up to study the emissions of single countries or 
groups of countries within the limited domain, with the ambition of having at least two systems 
covering the same country. Whenever possible, the simulations followed a common protocol 
specifying the years to be covered (2018 and 2021, and if focusing on 1-month inversions: 
February and July as reference months), the input data to be used (anthropogenic and natural 
fluxes, lateral boundary conditions) and the output to be generated.  

The systems differed in terms of underlying transport model, resolution, coverage, maturity 
(some systems were developed during the project), the type of observations assimilated (in-
situ and/or satellite), and also in the type of inversion approach. Some systems only focused 
on CO2, others on CH4, and some included both. The wide range of systems and approaches 
provides a comprehensive overview of the state-of-the-art in regional inverse emission 
modelling of CO2 (and CH4) in Europe. 

In addition to evaluating the potential of the regional systems, the following goals were 
targeted by a subset of models: 

• analyse the sensitivity of inversions to the type of observation network and the usage of 

satellite observations in addition to measurements from ground-based networks 

• analyse the use of fossil-fuel-like co-emitted species like NOx and CO to better 

differentiate between anthropogenic and biogenic CO2 fluxes 

• investigate the usage of future CO2M observations in synthetic experiments 

• contribute to the global stocktake (GST) exercise in WP6 

 
The national-scale inversion systems will be able to contribute to the future CO2MVS either 
by providing independent estimates for selected countries or by integrating the inversion 
strategies or results into the global system of ECMWF. A method for integrating local and 
national estimates into the global system in the form of the assimilation of ensembles of 
inversion results was developed in WP6 (see Deliverable 4.7). 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

The goal of this deliverable is to document the different regional model systems and the results 
obtained with a specific focus on how well national scale anthropogenic fluxes can be 
estimated. The deliverable summarises the current state-of-the-art, identifies strengths and 
limitations, and provides recommendations towards the future operational system. 

 

2.2.2 Work performed in this deliverable 

Eleven regional inversion systems were set up to perform inverse model simulations with a 
primary focus on six countries in Europe (Germany, France, Netherlands, Poland, Finland and 
UK, even though several systems cover the whole Europe) and for the US following a common 
modelling protocol. For several modelling systems, substantial further developments were 
required before they could be applied to the tasks outlined in the protocol. 

 

2.2.3 Deviations and counter measures 

One planned set of experiments was to perform OSSEs with synthetically generated CO2M 
observations to assess the potential of this future mission in comparison to the existing 
observation networks. In the course of the project, we planned to use the pseudo CO2M data 
to be generated in the frame of Task T5.3. However, since these pseudodata could not be 
provided early enough for the modelling teams to be incorporated, we focused on the analysis 
of inversions with real observations from the current observation network and real satellite 
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observations from OCO-2 in 2018 and, to a lesser extent, in 2021. Furthermore, one OSSE 
was performed with in situ observations in the USA. 

Another set of experiments was planned to assess the potential of using country-specific 
information, such as more detailed emission inventories or additional observations not 
included in operational networks. These experiments could not be performed as planned for 
two reasons: the first reason was that running the standard setup following the protocol was 
already challenging, using up a substantial amount of the available resources. The second 
reason was that the standard simulations indicated a rather poor constraint of anthropogenic 
CO2 emissions, a conclusion that would not have changed by switching to more detailed prior 
inventory. As a countermeasure, some additional tests of the sensitivity of satellite versus 
surface observations and of the sensitivity to the prior estimates of anthropogenic emissions 
and biospheric CO2 fluxes were performed. 

Due to unexpected departures of postdocs, difficulties in replacing them and difficulties in 
hiring new personnel, some of the planned work was substantially delayed. This particularly 
affected the work of VUA, AGH, UEDIN, DLR and CEA, but in the end, all these groups 
contributed to this deliverable, though with some delays, or not to the extent that would have 
been possible otherwise. One of the inversion contributions initially planned in this task was 
in the end limited to model development and a demonstration of its capabilities with a test case 
instead of a setup following the inversion protocol (the CTDAS-WRF inversions by DLR). A 
bug in the new developments of that system affected the results of the VUA contribution, as it 
was discovered too late to rerun. On the other hand, several models were able to run larger 
domains, thereby covering more countries than originally planned.  

When starting the CoCO2 project, there were some expectations that the first inversions in 
T4.4 could feed the CoCO2 report for the first GST in 2023. However, the first robust national 
scale inversion results came too late for this, for the reasons detailed above. Therefore, as an 
alternative, the extension of the European scale derivation of fossil fuel CO2 emissions based 
on the NOx and CO CIF-CHIMERE inversions from the H2020 VERIFY project and extended 
in WP6 of CoCO2 (see Section 3.2) were documented in the CoCO2 report for the GST, and 
a section detailing the plans in WP4 was added to this report (see the CoCO2 Deliverable 
6.5). 

 

3 The National-scale Inversions 

In the following sections, the 11 contributing modelling systems are described, and their 

results are presented in the following order: 
 

• the CIF-CHIMERE CO2 inversions by CEA (including analysis of the potential of 

assimilating co-emitted CO and NO2 satellite data), covering France, and assimilating in 

situ and/or OCO-2 satellite data (see Section 3.2) 

• the ICON-ART-CTDAS CO2 inversions by Empa, covering Northwest Europe, and 

assimilating in situ and/or OCO-2 satellite data (see Section 3.3) 

• the ICON-ART-CTDAS CH4 inversions by Empa, covering all of Europe, and 

assimilating in situ data (see Section 3.3.3) 

• the ICON-ART-DWD CH4 inversions by DWD, covering Germany, and assimilating in 
situ data (see Section 3.4) 

• the WRF analytical CO2 inversions by AGH, covering Germany and Poland, and 

assimilating in situ data (see Section 3.5) 

• the LUMIA CO2 inversions by ULUND, covering all of Europe, and assimilating in situ 

data (see Section 3.6) 

• the TRACE CO2 inversion OSSEs by ULUND, covering the contiguous USA, and 

assimilating pseudo in situ data (see Section 3.7) 
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• the LOTOS-EUROS CH4 inversions by TNO, covering all of Europe, and assimilating in 

situ data (see Section 3.8) 

• the GEOS-Chem CO2 inversions by UEDIN (co-assimilating CO2 and CO data), 

covering all of Europe, and assimilating in situ or OCO-2 satellite data (see Section 3.9) 

• the CIF-FLEXPART CH4 inversions by FMI, covering all of Europe, and assimilating in 
situ data (see Section 3.10) 

• the WRF-CTDAS model development by DLR and a test case assimilating in situ data 
(see Section 3.11) and preliminary inversions by VUA, covering all of Europe (with a 

zoom over North West Europe), and assimilating in situ data (see Section 3.11.4) 

In an effort to make the contributions more comparable, a modelling protocol for the CO2 
inversions was developed, based largely upon the prior emissions dataset (PED) developed 
in WP2 of the CoCO2 project. To streamline the following descriptions, this protocol is briefly 
described here, such that only deviations from this need to be specified. 

 

3.1 Modelling protocol 

A comprehensive modelling protocol inspired by the TRANSCOM/IG3IS protocol for European 
CH4 inversions was developed for the CO2 inversions and shared with all modelling teams. 
For CH4 inversions, the TRANSCOM/IG3IS protocol was to be followed. 

The main elements of the CO2 modelling protocol can briefly be summarised as follows: 

• Target years: 2018 and 2021 

• Domain: Left to the individual modelling groups, as different groups were targeting 

different countries. A high-resolution country mask was provided to ensure that national 
aggregation is taking place over common areas. 

• Emission inputs (see Table 1) 

• In-situ CO2 observations: Primarily ICOS stations, additional stations in Poland UK, no 

strict list, but modellers are required to document exact list of stations. Use time-filtered 

observations 12:00 to 16:00 LT, except mountain sites (00:00-06:00 LT). 

• Satellite CO2 observations: OCO-2 ACOS v10r. 

• Satellite observations of co-emitted species in case of join assimilation: Current 

operational version of NO2 or CO from TROPOMI, apply quality filters as recommended 
in Product User Guide. 

• Boundary conditions: CAMS inversion optimised fields. Although this data set is rather 
coarse in resolution, the biases are small. These were accessed from the CAMS 

Atmospheric Data Store (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-

global-greenhouse-gas-inversion?tab=form) 

• Meteorological driving data: Use ERA5 whenever possible. 

• Uncertainties: No strict rule, but all assumed uncertainties and covariance structures 

must be fully documented. 

• State vector: No strict rule, but anthropogenic and biospheric fluxes must be separately 

estimated. 

• Output: Gridded fluxes and uncertainties; national totals and uncertainties; mixing ratios 

and uncertainties. 

• Documentation: Mandatory list of information points provided to modellers, e.g. name of 
contact person, name and version of inversion system, etc. 

 

 
 

 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=form
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Table 1: CO2 emissions and time factors to be used. 

Category Product Resolution Source Mandatory 

Anthropogenic CO2 TNO 0.01° x 0.05°, annual with time 
factors, over Europe 

PED Yes 

Anthropogenic CO2 EDGAR  0.1°, annual with time factors PED No 

Biogenic CO2  
(GPP & Re) 

VPRM 1-km, hourly, over Europe PED Yes 

Biogenic CO2  

(GPP & Re) 
FLUXCOM 0.5°, hourly, global (for 2018: will 

be higher for 2021) 
PED No 

Ocean fluxes  NEMO-PISCES 0.25 degree PED Yes 

Biomass burning GFAS 0.1°, daily, with emission heights CDS Yes 

Lateral fluxes from Frederic 
Chevallier Gridded maps of displaced carbon 

at 8 km, monthly resolution. 

FC Yes* 

*For the lateral fluxes, the recommendation was to use the source term as a (fixed/flexible) prior, 

but not the sink, so as to avoid double-counting. This should account for e.g. harvest from 

agricultural regions which is later respired elsewhere (e.g. in cities). 

3.2 CIF-CHIMERE for CO2 inversions from in situ and satellite observations 
(CEA) 

This section describes the CIF-CHIMERE CO2 inversion configuration for France, which was 
developed in the framework of task T4.4 of the CoCO2 project. We present the reference 
inversions for the year 2018 and additional one-month sensitivity tests.  

This section also provides some insight on the current potential of the co-assimilation of 
species co-emitted with CO2 during fossil fuel combustion, based on (i) NOx and CO inversion 
results at the scale of France from other projects (the French ANR Argonaut and ADEME-
AQACIA Lock’Air projects and Robin Plauchu’s PhD thesis at LSCE) using a CIF-CHIMERE 
inversion configuration compatible with the one used for CO2 inversions, and(ii) the conversion 
of results from European scale NOx and CO inversions using a similar CIF-CHIMERE 
inversion configuration into CO2 emission estimates, initiated in the H2020 VERIFY project 
and extended in the CoCO2 and ESA-World Emission projects, and whose implementation 
and results obtained in 2022 are documented in Deliverables 6.4, 6.5, 6.6 and in the CoCO2 
GST leaflet of CoCO2 WP6. 

Three reference inversions have been conducted to estimate the CO2 anthropogenic and 
terrestrial ecosystem fluxes in France over the year 2018, assimilating the CO2 observations 
(i) from the ICOS network and associated surface stations, (ii) from the satellite instrument 
OCO-2, and (iii) from both. The additional one-month tests of sensitivity have been focused 
on assessing the impact of the choice of the prior estimates of the anthropogenic and biogenic 
fluxes. 

3.2.1 Model description 

The system relies on the coupling between the variational mode of the CIF (Berchet et al., 
2021), the regional chemistry transport model CHIMERE (Menut et al., 2013) and the adjoint 
of this model (Fortems-Cheiney et al., 2021). 
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3.2.1.1 Transport model 

The configuration of CHIMERE (and of its adjoint code) for France covers the domain: 11°W-
12°E; 39,5°N-54,5°N (cf Figure 1). Its zoomed grid has a 10 km horizontal resolution over 
France, and a 50 km horizontal resolution in the corners of this domain (cf Figure 1). It has 20 
vertical layers, from the surface to 200hPa. The modelling of the CO2 concentrations above 
200 hPa for comparisons to CO2 total column concentrations (XCO2) from satellite instruments 
relies on the global product used for the model’s CO2 initial and boundary conditions. This 
CHIMERE configuration is driven by the ECMWF / IFS operational meteorological forecasts. 

 

Figure 1: Domain of the CIF-CHIMERE inversions and 1) (left): binning into the CHIMERE 
zoomed grid of the OCO-2 v11 observations during the month of July 2018 2) (right): ground-
based CO2 measurement stations used for the inversions and prior estimate of the CO2 NEE 

from VPRM interpolated on the CHIMERE zoomed grid during the month of July 2018. 

The end of Section 3.2.2 documents some results of NOx and CO inversions using the same 
CHIMERE configuration except that for those inversions, the MELCHIOR-2 chemical scheme 
(with more than 100 reactions; Menut et al., 2013) and its adjoint code are activated for the 
CHIMERE forward and adjoint simulations, since NOx and CO are active species. The end of 
the Section 3.2.2 also recalls some results from Deliverables 6.4, 6.5 and 6.6 in WP6 based 
NOx and CO inversions with a configuration of CHIMERE at 0.5° resolution covering Europe 
(see the details of this configuration in D6.4). 

3.2.1.2 Prior fluxes and assimilated observations 

Various CO2 inversion experiments have been conducted with the CIF-CHIMERE 
configuration using different products for the prior estimates of the surface fluxes, and 
assimilating different observation datasets. This section details the set-up of these different 
experiments. This section also briefly indicates the main components of the NOx and CO 
inversions mentioned in the result section. All the prior fluxes and the global product used to 
impose the boundary conditions are interpolated on the grid of the CHIMERE configuration for 
France and at one-hour resolution. 

Prior fluxes for the reference CO2 configuration 

The reference configuration for the reference inversions relies on the prior estimate of the 
anthropogenic (fossil fuel and biofuel) emissions and terrestrial ecosystem fluxes from the 
TNO inventory (TNO_GHGco_6x6km_v4_0_year2018, at ~6-km resolution, with typical 
injection heights for the different sectors of activity) and the Vegetation Photosynthesis 
Respiration Model (VPRM) simulations (at 1 km resolution) delivered in the frame of WP2 
(Denier van Der Gon et al., 2022) and listed as standard products in the Task T4.4 modelling 
protocol (Section 3.1).  

In all experiments, the prior estimate of the initial and boundary conditions is derived from the 
CAMS global CO2 inversions v20r2 (assimilating surface data) at 2.5° (longitude) x 1.27° 
(latitude) resolution. As explained above, this global inversion product is also used to 
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complement the vertical columns of CO2 above the top boundary of CHIMERE when 
comparing the model to XCO2 observations. However, unlike CHIMERE’s initial and boundary 
conditions fields, this complement to the CO2 partial columns from CHIMERE is not controlled 
by the inversion: it is not considered as a significant source of discrepancy between the 
observed and simulated XCO2. 

The prior estimate of sea/ocean fluxes within the CHIMERE domain is based on a hybrid 
product from the H2020 VERIFY project at 0.125° resolution combining the coastal ocean flux 
estimates from the University of Bergen and a global ocean estimate from MPI-BGC-Jena 
(Rödenbeck et al., 2014, McGrath et al., 2023). This product differs from the standard product 
of the Task T4.4 modelling protocol. 

Two of the CO2 flux components (for which standard products were proposed in the Task T4.4 
modelling protocol) are ignored in both CHIMERE simulations and CIF-CHIMERE inversions: 
the biomass burning fluxes (assumed to be relatively small in France), and the source 
component of the “lateral fluxes” associated to human/animal respiration, wood decomposition 
and lake/river emissions. The use of these “lateral fluxes” appeared to be complicated, in 
particular due to the potential overlapping with the other flux components and due to the need 
to temporally disaggregate these fluxes at an hourly scale.    

Alternative prior anthropogenic and terrestrial ecosystem CO2 fluxes  

For the one-month tests of sensitivity to the prior estimate of the anthropogenic and terrestrial 
ecosystem fluxes, the following three flux products are used: 

• the COFFEE anthropogenic emission product combining the maps from EDGAR v4.3 at 

0.1° resolution, the national/annual budgets from BP statistics, and the TNO temporal 
profiles (Steinbach et al., 2011, McGrath et al., 2023; available from ICOS-CP) , as an 

alternative to the TNO WP2 standard product  

• an ORCHIDEE simulation at 0.25° resolution of the terrestrial ecosystem fluxes from the 

H2020 VERIFY project (McGrath et al., 2023), as an alternative to the VPRM WP2 

standard product 

• a C-TESSEL simulation of the terrestrial ecosystem fluxes from the ECMWF operational 

forecasts, as an alternative to the VPRM WP2 standard product 

 
Prior fluxes for the NOx and CO inversions 

The prior estimates of the NOx and CO anthropogenic emissions in the NOx and CO inversions 
for France briefly mentioned in this report rely on the Inventaire National Spatialisé (INS) 
inventory from the INERIS agency in France. Prior natural NOx and NMVOCs emissions 
estimates are extracted from simulations with the MEGAN model (as in Fortems-Cheiney et 
al., 2023). The prior estimate of the initial and boundary conditions are provided by European 
scale simulations with another configuration of CHIMERE (similar to that of Fortems-Cheiney 
and Broquet, 2022). In the European-scale NOx and CO inversions documented in 
Deliverables 6.4, 6.5 and 6.6, the prior estimate of the NOx and CO anthropogenic emissions 
is given by the TNO TNO-GHGco-v3 inventory (see the details in Deliverable 6.4). 

Observations 

The reference CO2 inversions and the tests of sensitivity to the prior estimate of the fluxes 
assimilate alternatively:  

• in situ hourly CO2 observations from ground-based continuous measurement stations in 

France and in its vicinity (mainly from the ICOS network, all accessed from the ICOS 

carbon portal, https://data.icos-cp.eu/portal/, ICOS_ATC_OBSPACK-Europe-L2-2022, cf 
Figure 1). This set of stations does not include peri-urban and urban stations dedicated to 

the monitoring of a specific urban area, and in particular, here, the stations of the 
Parisian CO2 network, which cannot be properly represented with a 10 km resolution 

model. Following the observation selection defined in Broquet et al. (2013) and kept for 

https://data.icos-cp.eu/portal/#%7B%22filterCategories%22%3A%7B%22project%22%3A%5B%22misc%22%5D%2C%22type%22%3A%5B%22co2EmissionInventory%22%5D%2C%22submitter%22%3A%5B%22oCP%22%5D%2C%22level%22%3A%5B3%5D%7D%7D
https://data.icos-cp.eu/portal/#%7B%22filterCategories%22%3A%7B%22project%22%3A%5B%22misc%22%5D%2C%22type%22%3A%5B%22co2EmissionInventory%22%5D%2C%22submitter%22%3A%5B%22oCP%22%5D%2C%22level%22%3A%5B3%5D%7D%7D
http://emissions-air.developpement-durable.gouv.fr/
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp2-verification-methods-for-fossil-co2-emissions/d2-12-final-re-analysis-of-the-national-scale-co2-anthropogenic-emissions-over-2005-2015
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp2-verification-methods-for-fossil-co2-emissions/d2-12-final-re-analysis-of-the-national-scale-co2-anthropogenic-emissions-over-2005-2015
https://data.icos-cp.eu/portal/
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the PYVAR-CHIMERE CO2 NEE inversions in Monteil et al. (2020), observations at low 

altitude stations are assimilated during the afternoon (here 12:00-18:00 UTC) only, and 
observations at high altitude stations are assimilated during the night time (here 0:00-

7:00 UTC) only. When several levels of measurements are available at a given station, 
the inversions assimilate the data from the highest level only. 

• relatively high resolution (1.29 km x 2.25 km) satellite XCO2 observations from the OCO-

2 NASA-JPL mission (the v11 dataset, cf Figure 1); all individual observations are 
assimilated and compared to the grid cell of CHIMERE containing the centre of their 

corresponding OCO-2 ground pixel (there is no aggregation of the observations at the 
model resolution), computing the appropriate XCO2 values from the model based on the 

OCO-2 averaging kernels and prior estimates for the retrieval of the XCO2 values  

• both of these observation datasets. 

 
For both the in situ and satellite data assimilation, the inversion system accounts for both 
transport model and observation errors. The observation error covariance matrix of the system 
is set up as a diagonal matrix (without spatial or temporal correlation across the observations) 
with the observation error values provided in the observation products, and with values for the 
transport model error for the in situ and satellite CO2 observations respectively taken from 
Broquet et al. (2013) and Potier et al. (2022).  

The NOx and CO inversions over France and for the period 2019-2021 have been conducted 
with the assimilation of the relatively high (3.5 x 5.5 km2 and 7 x 5.5 km2 respectively) 
resolution TROPOMI NO2 tropospheric vertical columns densities (TVCDs, using the 
TROPOMI-PAL product) and TROPOMI CO columns (OFFLv2.4) from the Sentinel-5P 
satellite mission. The European-scale inversions documented in D6.4, D6.5 and D6.6 also 
assimilate satellite data only: the MOPITT “surface” multispectral MOPITTv8-NIR-TIR CO 
product (for CO inversions), and the OMI OMI-QA4ECV-v1.1 or TROPOMI PALv2.3 NO2 
TVCD products (for the NOx inversions; see the details in Deliverable 6.4). 

3.2.1.3 State vector 

Here, the different inversion experiments consist of either a one-month inversion or a series 
of independent one-month inversions: twelve one-month inversions to cover the full year 2018. 
For each month, the CO2 inversions control separately the anthropogenic, terrestrial 
ecosystem and ocean CO2 fluxes in addition to the model initial and boundary conditions. In 
particular: 

• the anthropogenic (fossil fuel and biofuel) emissions are controlled at the scale of 5 

aggregated sectors of activity (public power, industry, other stationary combustion, road 

transport, other) per administrative region (in France) and per country (outside of 
France), and at daily temporal resolution; however, when using the EDGAR-COFFEE 

product as a prior estimate of the anthropogenic emissions in the sensitivity tests, there is 
no sectoral resolution, so that the system controls the total emissions per administrative 

region/country at daily temporal resolution 

• the ocean and terrestrial ecosystem fluxes are controlled at the model grid cell (i.e. 10-

km over France) and 6-hour resolution 

 
The setup for the part corresponding to the CO2 natural fluxes in the prior uncertainty 
covariance matrix in the system is derived from that of the PYVAR-CHIMERE CO2 NEE 
inversions in Monteil et al. (2020), albeit with 100-km scale spatial correlations for the 
terrestrial ecosystems (instead of 200-km spatial correlations, since the system operates at 
higher spatial resolution in this case) and some other slight differences. 

The setup for the part corresponding to the CO2 anthropogenic emissions in the prior 
uncertainty covariance matrix assumes a 50% one-sigma uncertainty in the total emissions 
per administrative region and day (i.e. a bit more than 100% 1-sigma uncertainty in the total 
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emissions per large sector of activity, administrative region and day). It ignores spatial 
correlations across the regions, and temporal day-to-day correlations.  

The prior uncertainty in the boundary conditions is characterised by a 500 km horizontal 
correlation scale and by a 2 ppm 1-sigma uncertainty in the total columns in the prior error 
covariance matrix.  

The prior uncertainty covariance matrix does not include any correlation between the different 
main components of the control vector (ocean, terrestrial ecosystem and anthropogenic 
fluxes, and boundary conditions).  

In the NOx and CO inversions for France, the logarithm of the anthropogenic and biogenic 
surface emissions are controlled separately, at the model grid cell (i.e. 10-km over France) 
and at daily resolution. The version of the European-scale NOx and CO inversions 
documented in Deliverables 6.4, 6.5 and 6.6 controlled the anthropogenic and biogenic 
surface emission separately but with a Gaussian uncertainty in the prior estimate of these 
emissions, at 0.5° and daily resolution (the most recent European scale inversions now control 
the logarithm of the emissions as the configuration for France). The daily maps of NOx or CO 
anthropogenic emissions from these European-scale inversions are converted into estimates 
of the fossil fuel CO2 emissions at the national and monthly scale for five large groups of 
sectors of emitting activities. This conversion relies on the sectoral maps of emissions for the 
three species and, implicitly, on the emission ratios between the species for each sector, 
country and month from the TNO inventory used as a prior estimate of the emissions (see 
Deliverable 6.4 for the details). 

3.2.1.4 Period of study 

The reference inversions cover the full year 2018, while the one-month sensitivity tests are 
focused on July 2018, one of the two months of reference for Task 4.4. 

3.2.2 Results 

3.2.2.1 Reference CO2 inversions 

Fit to the assimilated observations 

The reduction of the misfits between the simulation and the assimilated observations due to 
the corrections applied by the reference CO2 inversions to their prior estimate of the fluxes 
and initial/boundary conditions is illustrated in Figure 2 and Figure 3. 
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Figure 2: Timeseries of the hourly values of the CO2 concentrations over the afternoon or night 
time assimilation window for three low-altitude stations (TRN, OPE and OHP) and one high-

altitude station (PDM) over the year 2018: measurements (green dots) and prior (blue) / 
posterior (orange) simulations in the reference inversion assimilating surface data only. 

 

Figure 3: Comparison between the OCO-2 XCO2 observations and the corresponding 
CHIMERE XCO2 simulations in July 2018: averages over the month of the XCO2 values per grid 

cell of the model (observations, prior and posterior simulations, and differences) 

In the inversion assimilating CO2 surface data only, the reduction (from the prior to the 
posterior simulations) of the monthly RMS misfits between hourly simulated vs. measured CO2 
during the assimilation windows from all stations range between 23%-34% in Jan-Mar and 
Aug-Nov, and between 38%-50% in Apr-Jul. The RMS reduction is significantly lower in 
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December (12%). There are both low-altitude and high-altitude stations, stations both in 
France and in neighbouring countries for which the monthly RMS misfit reductions are >50%, 
especially in spring. Similarly, there are both low-altitude and high-altitude stations, and in 
France and in neighbouring countries for which the monthly RMS misfit reductions are <15%, 
especially in winter. The reductions (from the prior to the posterior simulations) of the annual 
RMS misfits between hourly simulated vs. measured CO2 during the assimilation windows 
from individual stations range from only 2 values below 10% i.e. 5% at TOH and 7% at GART, 
in Northern Germany, very close to the domain’s eastern boundary, to a large set of values 
above 30% corresponding to all types of stations (high- and low-altitude, within or outside of 
France).   

In the inversion assimilating OCO-2 observations only, the prior misfits (often large i.e. >1 or 
<-1 ppm) between these observations and the prior simulation are generally decreased by 
much more than 50%, with slight residual posterior misfits close to and often below the level 
of observation error (monthly posterior biases and RMS misfits to OCO-2 are systematically 
smaller than 0.1 ppm and 1.3 ppm respectively). Of note is the limited number of OCO-2 tracks 
for individual months over France illustrated by Figure 3, which helps fitting the available 
observations through the inversion.  

The co-assimilation of surface and satellite observations does not significantly impact the 
posterior fit to the OCO-2 observations, which remains very close to that when assimilating 
OCO-2 observations only in terms of RMS errors (the monthly biases increase significantly 
but remain very low, i.e. <0.1ppm). It has a larger impact on the posterior fit to the surface 
observations with the reduction (from the prior to the posterior simulations) of the monthly 
RMS misfits between hourly simulated vs. measured CO2 during the assimilation windows 
from all stations ranging from 7 to 39% when co-assimilating the satellite observations. This 
indicates some inconsistencies in the information brought by the two datasets, and of the 
larger weight of the satellite data in the corrections applied by the inversion whereas these 
data provide direct information on the fluxes. 

  

Corrections applied to the prior anthropogenic emissions in France 

 

Anthropogenic emissions, Feb 2018, assimilation of surface and OCO-2 observations 

 

Anthropogenic emissions, July 2018, assimilation of surface and OCO-2 observations
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Figure 4: Maps of monthly mean anthropogenic emissions in the modelling domain in 
February (top row) and July (bottom row) 2018 when assimilating both surface and OCO-2 CO2 
observations: prior estimate, posterior estimate and differences (i.e. increments applied by the 

inversions to the prior estimate) 

The most critical pattern from all three reference inversions with respect to the main 
objective of Task 4.4 is the lack of corrections from the inversion to the prior estimate 
of the anthropogenic emissions in France throughout the year, whether assimilating 
surface observation, OCO-2 observations, or both (see Figure 4). Some slight positive or 
negative corrections can be seen for the major French emission hotspots such as the Paris 
urban area and in north-eastern France, but this is very small in terms of relative differences 
to the prior estimate of the emissions. Larger corrections arise in neighbouring countries, 
especially in Germany, but they remain limited in amplitude, and can partially be explained by 
the need to handle residual errors in the background conditions despite the control of the 
boundary conditions. The variations of concentrations across the network of stations or along 
the OCO-2 tracks in the modelling domain is hardly sensitive to the uncertainties in the 
anthropogenic emission estimates whose signal is overwhelmed by that of the uncertainties 
in the terrestrial ecosystem fluxes. The inability to make use of existing peri-urban/urban 
stations dedicated to specific urban areas with the 10-km spatial resolution of the model 
exacerbates it: the sites for the surface stations used in the reference inversions have been 
primarily chosen to monitor natural fluxes, and are located relatively far from large urban and 
industrial areas. The OCO-2 tracks hardly catch major anthropogenic plumes from emission 
hotspots in France, as illustrated by the analysis of plume transects in the OCO-2 and OCO-
3 data in WP6 and Task 4.2 (Chevallier et al., 2022). Finally, the accuracy of the estimates of 
national / annual budgets of the anthropogenic emissions in France from the TNO inventory 
(fed by the French National Inventory Report -NIR- to UNFCCC) may also partially explain the 
lack of corrections for these emissions. 

 

Corrections applied to the prior terrestrial ecosystem fluxes in France 

NEE, Feb 2018, assimilation of surface observations

 

 

NEE, Feb 2018, assimilation of OCO-2 observations
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NEE, Feb 2018, assimilation of surface and OCO-2 observations

 

NEE, July 2018, assimilation of surface observations

 

NEE, July 2018, assimilation of OCO-2 observations

 

NEE, July 2018, assimilation of surface and OCO-2 observations

 

Figure 5: Maps of monthly mean NEE in the modelling domain in February (top 3 rows) and 
July (bottom 3 rows) 2018 when assimilating surface (1st and 4th rows), OCO-2 (2nd and 5th 
rows) and surface and OCO-2 (3rd and 6th rows) CO2 observations: prior estimate, posterior 

estimate and differences (i.e. increments applied by the inversions to the prior estimate) 

 

The terrestrial ecosystem fluxes, and more specifically here, the Net Ecosystem Exchange 
(NEE) was not the primary target of the relatively high-resolution inversion experiments in 
Task 4.4. However, even with the national-scale configuration for France at 10 km resolution 
over the country, it is the surface flux by far the main surface flux components controlled by 
the inversion assimilating observations from the existing surface and OCO-2 observations in 
any area of the country, including the Paris region (see Figure 5). In all three reference 
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inversions, the typical amplitude of the local corrections to the prior NEE is more than one 
order of magnitude larger than that of the corrections seen for the anthropogenic emissions in 
the Paris area.  

The corrections applied to the prior estimate of the NEE tend to be highly heterogeneous in 
space and time when assimilating the surface network and/or the OCO-2 satellite data as 
illustrated by Figure 5. A critical result is the large differences in terms of sign, spatial patterns, 
and amplitudes between the corrections (increments) from the assimilation of in situ data and 
from the assimilation of OCO-2 data. The lack of consistency between the constraints brought 
by the two datasets is a source of concern for the robustness of the NEE inversions: one can 
hardly assume that these differences are due to the fact that the two observing systems catch 
the signal from different areas, unless one assumes that their footprint would be too narrow to 
support a real national-scale monitoring of the fluxes. The surface networks have been used 
for more than a decade for the regional inversion of NEE (e.g. Broquet et al., 2011) while the 
assimilation of satellite data for such an activity remains relatively recent. Therefore, there is 
more confidence in the results from the assimilation of surface data.  

When assimilating both datasets, the results in winter are dominated by the constraint from 
the surface network, as revealed by the similarity between these results and those when 
assimilating surface data only. This can be explained by the relatively low number of OCO-2 
tracks and valid observations over France in winter when the cloud cover and solar zenith 
angles are higher (see the results for Feb 2018 in Figure 5). However, in spring-summer, there 
is a balance between the constraints from the two datasets, with the local corrections being 
alternatively dominated by one or the other dataset (as revealed by the similarity to the local 
corrections applied when assimilating the datasets separately). Along the main OCO-2 ground 
tracks (e.g. along the Normandy/Northwest - Provence/Southeast diagonal of France in July 
2018, see Figure 5) the corrections are generally dominated by the constraint from the 
satellite, with the significant observation errors associated with the assimilation of these 
satellite data being balanced by the dense observation coverage of OCO-2 along its tracks. In 
a general way, the combination of the two datasets leads to maps of increments that 
significantly differ from those from the assimilation of a single dataset, so that this combination 
results in a complex synthesis. 

Monthly and annual budgets of anthropogenic and terrestrial ecosystem fluxes in 
France 

The resulting monthly and annual budgets of anthropogenic emissions and NEE over France 
in 2018 from the three reference inversions are illustrated in Figure 6 and Table 2. 

 

Assimilation of surface observations
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Assimilation of OCO-2 observations

 

Assimilation of surface and OCO-2 observations

 

Figure 6: Monthly mean budgets of anthropogenic emissions, NEE and total CO2 fluxes in 
France in 2018 when assimilating surface (1st subfigure), OCO-2 (2nd subfigure) and surface 
and OCO-2 (3rd subfigure) CO2 observations: prior and posterior estimates. Note that the 
curves of the prior anthropogenic emissions are hidden by those of the posterior 
anthropogenic emissions (due to their similarity) 

 

Table 2: Annual budgets of NEE and anthropogenic emissions in France in 2018 from the three 
reference inversions, in TgC 

 NEE prior NEE post Anthropogenic 
emission prior 

Anthropogenic 
emission post 

Assim surf -89 -41 102 102 

Assim OCO-2 -89 -83 102 102 

Assim 
surf+OCO-2 

-89 -37 102 102 

 

This figure and table confirm and summarise (i) the lack of correction applied by the reference 
inversions to the prior estimate of the anthropogenic emissions, (ii) the discrepancies between 
the corrections to the prior estimate of the NEE from the assimilation of surface observations 
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and from the assimilation of OCO-2 observations (iii) the complexity of the combination of the 
constraints on the NEE estimates from these two datasets when both are assimilated. 

When assimilating OCO-2 observations only, the balance between positive corrections in 
spring and negative corrections in summer-fall-winter to the prior NEE monthly budgets leads 
to a weak correction of the annual budgets of NEE, and a posterior estimate of a sink of 83 
TgC which stays close to the high prior value of a sink of 89 TgC over France in 2018. The 
resulting seasonal cycle is flattened compared to the prior one. The assimilation of the surface 
data with or without satellite observations tends to lead to positive corrections in fall-winter, 
but also in spring, leading to both a positive shift and a flattening of the seasonal cycle from 
the prior estimate of the NEE, and to an annual sink of 41 to 37 TgC in France, much smaller 
than in the prior estimate of the NEE. Overall, the weight of the surface network appears to be 
larger than that of the satellite observations in the correction of the annual budget of NEE, 
which can be explained by the limited number of satellite tracks and valid observations in 
France.   

 

3.2.2.2 Sensitivity to the prior estimates of the anthropogenic emissions and 
NEE: one-month tests for July 2018 

The list of one-month tests of the sensitivity of the result to the prior fluxes and the 
corresponding prior flux products are given and labelled in Table 3. The labels of these tests 
can correspond to inversions assimilating the surface CO2 observations only, the satellite data 
only, or both datasets (as indicated in the figures or in the text).  

 

Table 3: The one-month CO2 inversion in July 2018: reference inversion and sensitivity tests 

CO2 inversion experiment Prior estimate of the 
anthropogenic emissions 

Prior estimate of the NEE 

Reference TNO VPRM 

A TNO ORCHIDEE 

B TNO C-TESSEL 

C EDGAR-COFFEE VPRM 

D EDGAR-COFFEE ORCHIDEE 

E EDGAR-COFFEE C-TESSEL 
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Anthropogenic emissions, July 2018

 

NEE, July 2018

 

Figure 7: Maps of monthly mean anthropogenic emissions (top 3 rows) and NEE (bottom 3 
rows) in the modelling domain in July 2018 when assimilating surface CO2 observations only: 
prior estimate, posterior estimate and differences (i.e. increments applied by the inversion to 
the prior estimate) for the different tests of sensitivity (see Table 3 and comparisons to Figure 

5 for the reference inversion) 
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Assimilation of surface observations

 

Assimilation of OCO-2 observations 

 

Assimilation of surface and OCO-2 observations 
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Figure 8: Monthly budgets of anthropogenic emissions (denoted FF like fossil fuel but 
containing the biofuel emissions) and NEE in France in July 2018 when assimilating surface 

(1st subfigure), OCO-2 (2nd subfigure) and surface and OCO-2 (3rd subfigure) CO2 
observations: prior and posterior estimates for the different tests of sensitivity (see  Table 3 

and comparisons to Figure 6 for the reference inversions) 

The main conclusions arising from this series of sensitivity tests are illustrated in Figure 7 and 
Figure 8: 

1) There is a lack of correction to the anthropogenic emissions in all cases. Using the EDGAR-
COFFEE product as a prior estimate of the emissions (with a control of the total rather than 
sectoral budgets of the anthropogenic emissions in the administrative regions) does not alter 
this behaviour, even though the corrections are slightly larger when using the EDGAR-
COFFEE product than when using the TNO inventory when assimilating surface observations. 
There is a strong consistency at the national scale between the two inventory products, and 
the higher corrections from the inversion to the EDGAR-COFFEE product than to the TNO 
inventory actually reduce the slight (0.2 TgC for France in July 2018) misfit between these two 
products when assimilating surface observations or both surface and satellite observations. 
As a result, all inversions assimilating the same set of observations have similar posterior 
estimates of the national budgets of anthropogenic emissions in France in July 2018 (6.3-6.4 
TgC when assimilating surface observations only, 6.3-6.6 TgC when assimilating satellite data 
only, and 6.3-6.5 TgC when assimilating both datasets). Such a result could strengthen the 
assumption that the lack of corrections to the anthropogenic emissions in the inversion is due 
to the high accuracy of the prior emission estimates. However, the spatial distribution of these 
emissions is relatively uncertain and differs between the two inventories a priori and a 
posteriori (the distribution of the emissions in the TNO inventory being more diffuse than in 
the EDGAR-COFFEE inventory). Therefore, the convergence of the difference inestimates of 
anthropogenic emissions from 0.2 TgC (prior) to less than 0.1 TgC (posterior) in July 2018 
when assimilating surface data only could simply be fortuitous, especially since the stronger 
corrections to the TNO inventory than to the EDGAR-COFFEE inventory leads to an increase 
in the spread of posterior estimates compared to the prior estimates when assimilating satellite 
data only.   

The results for NEE are not impacted much by the change of prior estimate of the 
anthropogenic emissions, which strengthens the conclusion of the lack of sensitivity to these 
prior emissions. They differ by ~1 TgC in terms of the budget of NEE for France in July 2018 
when using the TNO vs EDGAR-COFFEE inventory as a prior estimate of the anthropogenic 
emissions when assimilating surface observations (see A vs. D, B vs. E and C vs. the 
reference inversions when assimilating surface observations only or both surface and satellite 
observations), which is significantly higher than the differences between the two 
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anthropogenic emission inventories, even though it is relatively small compared to the typical 
NEE budgets obtained with the different inversions (see below). This may reveal some 
sensitivity at some of the surface stations to the local anthropogenic emissions (impacting the 
corrections to the NEE when changing the inventory for the prior anthropogenic emission 
estimate), despite the general lack of sensitivity of the surface network to the uncertainties 
assigned to the anthropogenic emissions in the inversion system. This would relate to the 
limited capability to account for the large uncertainties in the local distribution of the 
anthropogenic emissions when controlling these emissions at regional and not at local scale. 
This may, however, require some precise knowledge of the local uncertainties and of their 
spatial and temporal correlations, which is challenging (Super et al. 2020). The problem is a 
bit more significant when assimilating only the limited amount of available OCO-2 
observations, with differences between the posterior estimates of the NEE at the monthly and 
national scale reaching 2.7 TgC between test cases B and E (i.e. with C-TESSEL outputs as 
the prior estimate of the NEE).      

2) There is a convergence of the estimates of NEE, illustrated by the comparison of the spread 
of posterior estimates of NEE when assimilating a given set of observations (over France in 
July 2018: -10 to -17.6 TgC when assimilating surface data only, -31.9 to -38.3 TgC when 
assimilating satellite data only, and -22.6 to -27.9 TgC when assimilating both datasets) to the 
spread of the prior estimates of the NEE (-6.5 to -26.1 TgC) in this ensemble of experiments. 
While the ensemble of prior NEE maps is heterogeneous, the posterior maps of NEE when 
assimilating surface observations along with satellite data or not all exhibit consistent large-
scale patterns, such as the sinks in northeast France, Brittany, and southwest France, and the 
sources in southern France, the northern Alps and western France. This provides confidence 
in the robustness of the inversions, especially when assimilating surface data. The ensemble 
of posterior maps from the tests assimilating satellite data only are also consistent between 
themselves, but they bear some significant differences locally to those when assimilating 
surface data. Furthermore, the significant residual discrepancies between the posterior 
estimates of the NEE from the different inversions, especially when considering the full 
ensemble of posterior estimates from all the tests assimilating different datasets (with a spread 
of values between -10 to -38.3 TgC for France in July 2018) reveal the limits of the constraint 
from the existing observing system and the corresponding uncertainties in the NEE estimates. 

 

3.2.2.3 Insights on the potential of the co-assimilation of satellite NO2 and CO 
observations from NOx and CO inversions 

The following consists of a brief summary of some of the current conclusions from Robin 
Plauchu’s PhD research at LSCE (in the frame of the French ANR ARGONAUT and ADEME-
AQACIA Lock’Air projects) which has not been finalised yet, and from the European-scale 
experiments initiated in the H2020 project VERIFY, extended and documented in CoCO2 WP6 
(D6.4, D6.5, D6.6) and in the ESA World Emission project. 

The analysis of the TROPOMI CO measurements over France does not indicate a sufficient 
sensitivity of the current TROPOMI CO observation products to the anthropogenic emissions 
in the country. The images do not show clear patterns of plumes from the major French urban 
areas. When applying the corresponding averaging kernels to the vertical columns of CO 
simulated by CHIMERE, the resulting simulations of satellite images do not show such spatial 
patterns either, while the model exhibits large plumes of CO near the surface downwind of 
major urban and industrial areas. Consequently, the CIF-CHIMERE CO inversions 
assimilating the TROPOMI CO observations do not apply significant corrections to their prior 
estimate of the CO anthropogenic emissions. Instead, corrections are applied mainly to the 
initial and boundary conditions of the model.  

At European scale, the assimilation of the MOPITT CO surface product, whose sensitivity to 
the signature of the anthropogenic emissions near the surface appear to be larger than that of 
the current TROPOMI CO product over France, but whose spatial resolution is coarser than 
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that of TROPOMI, brings a stronger but still limited constraint for the derivation of the 
anthropogenic emissions, so that the corrections applied by the CO inversions to the prior 
estimate of the emissions from the TNO inventory at the European to national scales is 
moderate (see D6.5, D6.6 and Fortems-Cheiney et al. 2023).  

The NOx inversions for France or at the European scale demonstrate some capabilities to 
control the NOx anthropogenic emissions at national scale based on TROPOMI and even the 
OMI NO2 TVCDs. However, the non-linearity of the chemistry raises computational challenges 
for the iterative scheme of the variational inversion. This and the large observation errors 
associated with the current NO2 data limit the ability to fit these data and the amplitude of the 
corrections to the prior estimate of the emissions (see D6.5). This challenge adds to that of 
the uncertainties in the NOx-to-CO2 anthropogenic emission ratios in the context of the co-
assimilation of NO2 and CO2 observations for the monitoring of the CO2 anthropogenic 
emissions (Fortems-Cheiney and Broquet, 2022, Deliverables 6.4, 6.5 and 6.6). 

The current results, including those from Deliverable 6.5, raise some positive perspectives 
regarding the use of co-emitted species to increase the ability to control the anthropogenic 
CO2 emissions in national scale inversions, starting from the overall consistency between the 
spaceborne observations and simulations of the NO2 and CO concentrations in European 
countries where the anthropogenic emission estimates are relatively accurate. They show that 
the satellite NO2 observations are currently more promising than the satellite CO observations 
over a country like France. However, the detailed analysis of the NOx inversion behaviour and 
results indicate that much developments and work are still needed to refine the NOx inversions 
themselves before tackling the co-assimilation of NO2 and CO2 observations.  

 

3.3 ICON-ART-CTDAS for CO2 and CH4 inversions from in situ and satellite 
observations (Empa) 

3.3.1 Model description for the CO2 inversions 

3.3.1.1 Transport model 

The atmospheric transport model in this inversion system is ICON-ART, which is composed 
of the icosahedral non-hydrostatic weather and climate model ICON and the ART extension 
for the simulation of aerosols and reactive trace gases. ICON is a highly versatile model for 
global and regional weather and climate simulations developed jointly by the German Weather 
Service (DWD) and the Max Planck Institute of Meteorology. Tracers are transported with 
perfect mass conservation by solving the continuity equation of mass for each tracer 
consecutively in the vertical with a finite volume method and in the horizontal direction with a 
simplified flux-form semi-Lagrangian method. Here, ICON-ART was used in a limited area 
configuration with a grid spacing of about 13 km and with meteorological initial and boundary 
conditions obtained from ERA5 reanalyses (Figure 9). 
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Figure 9: ICON-ART simulation domain with a priori anthropogenic CO2 emissions and the 
locations of in-situ CO2 measurement stations used in the inversion. ICON-ART has a semi-
structured grid composed of triangles. The average distance between triangles (resolution) 

was about 13 km. 

 

The ART-model was developed as an extension for ICON at the Karlsruhe Institute of 
Technology (KIT) with the aim of simulating aerosols as well as passive and chemically 
reactive trace gases. The ART module is coupled online with ICON and allows a flexible 
definition of tracers and processes to be included. Since only CO2 was simulated in the present 
study, all chemistry and aerosol processes were switched off and all CO2 tracers were treated 
as fully passive with no feedback on meteorology. 

To simplify and accelerate the treatment of emissions during the simulations, we implemented 
the Online Emissions Module (OEM) into ICON-ART, which was originally developed for the 
regional weather and climate model COSMO (Jähn et al. 2020). OEM allows source-specific 
temporal and vertical emission profiles to be applied online, which greatly reduces I/O during 
the simulation. Furthermore, the Vegetation Photosynthesis and Respiration Model (VPRM) 
was integrated in OEM in order to simulate the exchange of CO2 between the atmosphere and 
the land vegetation online during the simulation, driven by near-surface temperature and 
radiation from ICON and by two satellite indices (enhanced vegetation index EVI and the Land 
Surface Water Index LSWI) from MODIS satellite observations. The standard land cover data 
set used in ICON is GlobCover, which proved to be insufficiently accurate for representing the 
vegetation over Europe. We therefore exchanged the land cover data set with CORINE, which 
is limited to Europe but describes vegetation cover and land use much more accurately than 
the global data set GlobCover. Although not identical, the fluxes computed online in this way 
are largely consistent with the offline VPRM product provided through the modelling protocol 
(e.g. the same set of VPRM parameters was used). 

For inverse modelling, we coupled ICON-ART with the CarbonTracker Data Assimilation Shell 
(CTDAS), which is an Ensemble Kalman Smoother originally developed for the estimation of 
biospheric CO2 fluxes at the global scale (Peters et al., 2005). To couple ICON-ART with 
CTDAS in a robust and efficient way, we made a few adaptations to ICON-ART and the 
simulation setup. CTDAS requires a large ensemble of tracers to be simulated, each ensemble 
member corresponding to one specific perturbation of the state vector, e.g., fluxes and 
boundary conditions (see next section). Instead of generating these perturbed fields offline 
and reading them in during simulation, as is usually done, we extended the OEM module with 
the option to generate the ensemble of perturbed fluxes and boundary conditions and 
corresponding tracers online during the simulation. With this extension, the only input required 
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at the start of a simulation is the ensemble of perturbed scaling factors provided by CTDAS, 
which greatly simplifies and accelerates the simulations. Each scaling factor scales the flux of 
one emission category (one tracer can experience the emissions of multiple categories) in one 
region. The regions can be any combination of grid cells (including individual cells) and are 
defined by a region mask provided as an input for OEM. In order to keep the simulation close 
to the real meteorology, ICON was weakly nudged towards ERA5 meteorology in the whole 
model domain. This was achieved by providing the meteorological forcing data from ERA5 not 
only at the domain boundaries but in the whole model domain and defining a minimum nudging 
strength in the inner parts. Further details of the ICON-ART-CTDAS system and a first 
application to the estimation of European CH4 emissions are presented in Steiner et al. (2023). 
Any results submitted using ICON-ART-CTDAS regarding CH4 come from the results of 
Steiner et al. (2023). In the following, we describe the newly obtained CO2 inversion results in 
detail while the CH4 results are summarised only briefly. 

For the CO2 simulations, the following model setup was used: 

• Region: [-8.639°, 17.856°] lon, [40.621°, 58.962°] lat; 21 184 horizontal cells in total; 

effective horizontal resolution is 13.15 km. Extracted from the ICON R6B3 parent grid. 

• Meteorological IC/BC: ERA5 (reanalysis-era5-complete, 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
complete?tab=overview). For ICON, we furthermore post-process the soil parameters 

following the script mars4icon that is shipped with ICON. 

• Atmospheric IC/BC: CAMS global inversion-optimised greenhouse gases 
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-

inversion?tab=overview). The CAMS data were interpolated onto the ERA5 dataset using 
linear interpolation on the log pressure axis vertically and linear interpolation horizontally. 

 

3.3.1.2 Prior fluxes and assimilated observations 

Prior fluxes were chosen according to the protocol. As will be mentioned again later, only the 
first two (anthropogenic and biospheric fluxes) were optimised, the others were fixed. 

• Prior anthropogenic emission fluxes: TNO_GHGco_6x6km_v4_0_year2018 inventory 

for the year 2018, with vertical profiles and temporal profiles as specified in the TNO 
dataset. 

• Prior biospheric fluxes: computed by VPRM online during the ICON-ART simulation,  

driven by MODIS/Terra surface reflectance imagery version 6.0 (since superseded by 
version 6.1 at https://e4ftl01.cr.usgs.gov/MOLT/MOD09A1.061/), and the CORINE land 

cover dataset at 100 m resolution (https://land.copernicus.eu/en/products/corine-land-
cover/clc2018). The VPRM parameters used are those from Gerbig et al., 

https://meta.icos-cp.eu/objects/JmRwpxQzfbHzwzH26abwt10z. 

• Prior forest fire fluxes: Global Fire Emissions (GFAS, 
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-

gfas?tab=overview). The data were averaged over the 10-day interval we simulate over. 
Emissions are from the surface only, the temporal profile is constant over time. 

• Prior ocean emissions: from Cyril Germineaud at Mercator (as per the protocol). The 

data are averaged over the 10-day simulation interval. Emissions are from the surface 
only, the temporal profile is constant over time. An error was made in our setup, such that 

no negative ocean fluxes were included. Since the contribution of ocean fluxes is very 
small, the impact on our results is expected to be negligible. 

• Prior lateral fluxes: from Frederic Chevallier (as per the protocol); computed as: 

allcropsource-biofuelcropsource+allwoodsource-biofuelwoodsource+lakeriveremiss. 
Again, the data were averaged over the 10-day simulation interval. Emissions are from 

the surface only, the temporal profile is constant over time. 
 

In terms of assimilated observations, we optimised the following set of data: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview
https://e4ftl01.cr.usgs.gov/MOLT/MOD09A1.061/
https://land.copernicus.eu/en/products/corine-land-cover/clc2018
https://land.copernicus.eu/en/products/corine-land-cover/clc2018
https://meta.icos-cp.eu/objects/JmRwpxQzfbHzwzH26abwt10z
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
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• ICOS ObsPack ground station observations: ICOS_ATC_OBSPACK-2022 

(https://meta.icos-cp.eu/collections/w7dcCpKXsyn-NuVlzXhcX5qN). When multiple inlet 
heights were available (e.g., the Cabauw station has inlets at 27, 67, 127 and 207 metres 

above ground level), only the data from the highest level were assimilated. The exact list 
of stations and the values used for model data mismatch (MDM) are given in Table 4 

below. The MDM is based on a prior run for a full year, then taking 2.5+standard-

deviation-at-the-station in ppm. For a normal ground station, we took the daytime mean 
observation from 12-17 UTC; for a mountain station we took the night time mean 

observations from 0-7 UTC. Furthermore, for a normal ground station, we sampled 
ICON-ART at an altitude corresponding to the inlet height over the model topography 

(which does not necessarily correspond exactly to the inlet height over the true ground 
level); for a mountain station we sampled ICON-ART at the true elevation over sea level. 

• OCO-2 total column observations:  OCO2_L2_Lite_FP_11r 

(https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_11r/summary). Only 
observations with “XCO2_Quality_Flag==0” were used. Simulated ICON-ART columns 

(to about 25 km altitude) were vertically extended to the top of the atmosphere with 

CAMS data over the highest available pressure level. The model data mismatch was set 
to 2 ppm plus the reported 1-sigma uncertainty of the column-averaged dry air mole 

fraction (typically smaller to 1 ppm).    
 

Horizontal sampling of the ICON-ART data towards the observations was done using an 
inverse-distance-weighting interpolation method. 

Table 4: The ICOS ground station name and inlet height above the ground level in metres (after 
the final underscore), the assigned model data mismatch (MDM), and indication if a station is 

treated as a mountain station (indicated with an X in the column). 

Station Name and inlet height (m) MDM (dry air ppm) Mountain station 

Beromunster_212 8.24  

Bilsdale_248 5.85  

Biscarrosse_47 5.60  

Cabauw_207 8.61  

Carnsore Point_14 4.19  

Ersa_40 4.40  

Gartow_341 6.57  

Heidelberg_30 10.66  

Hohenpeissenberg_131 6.06 X 

Hyltemossa_150 5.49  

Ispra_100 11.61  

Jungfraujoch_5 3.08 X 

Karlsruhe_200 10.05  

Kresin u Pacova_250 5.83  

La Muela_80 5.21  

Laegern-Hochwacht_32 11.56  

Lindenberg_98 7.44  

Lutjewad_60 7.65  

Monte Cimone_8 3.73 X 

Observatoire de Haute Provence_100 6.15  

Observatoire perenne de l'environnement_120 8.89  

Pic du Midi_28 3.22 X 

Plateau Rosa_10 3.32 X 

Puy de Dome_10 5.45 X 

https://meta.icos-cp.eu/collections/w7dcCpKXsyn-NuVlzXhcX5qN
https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_11r/summary
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Ridge Hill_90 7.09  

Saclay_100 8.87  

Schauinsland_12 5.79 X 

Tacolneston_185 6.67  

Torfhaus_147 6.62  

Trainou_180 7.82  

Weybourne_10 6.47  

Zugspitze_3 3.68 X 

 

3.3.1.3 State vector for the CO2 inversions 

We used CTDAS for the inversion, using cycles of 10 days and 2 lags. Each state vector 
element is thus optimised twice, first based on observations in the current 10-day window and 
then based on observations in the next 10-day window. The state vector has size 

𝑛𝑐𝑒𝑙𝑙𝑠 × 𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 × 𝑛𝑙𝑎𝑔𝑠 + 8 = 84 744 per cycle, where: 

• 𝑛𝑐𝑒𝑙𝑙𝑠 = 21 184, that is, we optimised each cell of the ICON-ART simulation. 

• 𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 = 2, that is, we optimised the anthropogenic fluxes (assuming a prior 

uncertainty of 50%, and a specific length of 200 km assuming exponential decay in the 
covariance matrix) and the net biospheric fluxes consisting of the sum of the respiration 

and the gross photosynthesis production (assuming a prior uncertainty of 100%, and a 

specific length of 300 km assuming exponential decay in the covariance matrix). 

• 𝑛𝑙𝑎𝑔𝑠 = 2, that is, we optimised each time period of 10 days twice. 

• +8, that is, we had 8 inflow regions controlling the background CO2 concentration as 

taken from CAMS, which were optimised separately (see Steiner et al. (2023) for more 

details), with an assumed prior uncertainty of 1.5% (roughly 6 ppm) and a 25% 
covariance between neighbouring inflow regions. 

 
No correlations between the categories were assumed. 

We applied localization in the inversion, by multiplying the result for each assimilated 
observation with an exponential decay function of 400 km centred on the observation location. 

We generated an ensemble of 180 members for each cycle, with CO2 = λanth CO2anth+λVPRM 
CO2VPRM+λBG CO2BG+ forest fire emissions + ocean emissions + lateral fluxes, where λanth and 
λVPRM are varying spatially, while λBG consists of only 8 values for each of the 8 inflow regions). 

 

3.3.1.4 Period of study 

02/01/2018 – 27/12/2018 (i.e., January 2, 2018, until December 27, 2018). The first and last 
10-day cycle are only optimised once. Due to the limited resources, no simulations for 2021 
could be conducted. 

 

3.3.2 Results of the CO2 inversions 

Two inversions were carried out, differing in the observations that were assimilated. Inversion 
(1) assimilated only in-situ ICOS stations; inversion (2) assimilated in-situ ICOS stations and 
OCO-2 satellite observations. The results section is split into three subsections. The first 
subsection shows the comparison of inversion 1 to observational data and inversion results 
on the model scale; the second subsection shows similar results for inversion 2; the third 
subsection summarizes the results on a country-scale basis, and discusses the overall results. 
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3.3.2.1 Assimilating ICOS station data only 

Figure 10 shows the timeseries of hourly CO2 dry mole fractions at station ‘Bilsdale’ at 42 m 
altitude (https://meta.icos-cp.eu/objects/lVo3gLCopZerMjEogqkRAns0), subsampled to the 
assimilated times (12-17 UTC for normal stations, 23-5 UTC for mountain stations) for real 
observations, a prior simulation and the posterior simulation (‘optimised’). This station was 
chosen merely as an example. We can see that the posterior simulation (in black) moves the 
simulated values closer to the observed values compared to the prior. This result is also 
quantified in the error plot below the timeseries, with the root mean square error (RMSE) and 
bias both decreasing, and the Pearson product-moment correlation coefficient (‘r’) rising.  

Figure 11 summarises the quantitative results now for all ICOS stations in a bar plot. We can 
generally see similar trends as for the Bilsdale 42 m altitude station, with RMSE values 
dropping, biases moving closer to 0, and R-squared (‘r2’) values rising. Exceptions exist for 
the Křešín u Pacova and La Muela stations which have a more modest increase in their R-
squared scores, but these are stations at the edge (in the Czech Republic and Spain, 
respectively) which suggests that we are dealing with edge artefacts. Figure 12 shows a Taylor 
diagram summarizing the results for all the stations, similarly showing and suggesting an 
improved performance when moving from the prior to posterior simulations. 

Figure 13, Figure 14 and Figure 15 show a map of the yearly average anthropogenic, 

biospheric and background fluxes and associated 𝜆 values with which the prior fluxes (i.e., the 

state vector elements) are multiplied. It is quite clear to see that the 𝜆 values are determined 
at the observation station locations and decay away from there, such that the final map of 𝜆 
values is something like an interpolated map between the values at various station locations. 

For the background values of  𝜆, we note that the mean value is approximately 0.99 which on 
a background of about 400 ppm corresponds to a 4 ppm difference. Indeed, we can see that 
when averaged over a full year, the surface-level of the simulation has changed by about -2 
ppm after optimization compared to the prior simulation run. Clearly, the CAMS product 
(optimised with in situ data) needs to be adjusted further downwards when optimised with the 
in situ data used in our inversion setup. 

https://meta.icos-cp.eu/objects/lVo3gLCopZerMjEogqkRAns0
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Figure 10: Example of simulated timeseries for the station Bilsdale (UK) with ICON-ART, when 
assimilating ICOS data only. Note the discrepancy between simulations and observations in 

early June that is not well captured in the inversions (just right of the 2018-06 line). 
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Figure 11: Inversion results with ICON-ART when assimilating ICOS station data only. Note 
that the full range of ICOS OBSPACK stations in the domain is shown here, at multiple inlet 
heights if applicable, this range is larger than the set of stations used for inverting the data. 

 



CoCO2 2023  
 

Intercomparison of national-scale inversion systems 41 

 

Figure 12: Taylor diagram for the inversion results with ICON-ART assimilating ICOS station 
data only; results improve when moving towards the star on the bottom horizontal axis. Each 

dot represents the performance at an ICOS station for a year of data (i.e., it represents the 
same information as the previous figure). 

 

Figure 13: Full-year inversion results with ICON-ART assimilating ICOS station data only, for 
the anthropogenic component. Black dots on the map correspond to ICOS stations. 
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Figure 14: Full-year inversion results with ICON-ART assimilating ICOS station data only, for 
the biospheric component. Black dots on the map correspond to ICOS stations. 

 

 

Figure 15: Full-year inversion results with ICON-ART assimilating ICOS station data only, for the 
average background component. Inflow regions are denoted following major side - minor half 
side (e.g., ‘NW’ means from the top, on the left half, while ‘WN’ means from the left, on the top 
half). 
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3.3.2.2 Assimilating both ICOS station and OCO-2 data 

Figure 16 shows the timeseries of hourly CO2 dry mole fractions at station ‘Bilsdale’ at 42 m 
altitude (https://meta.icos-cp.eu/objects/lVo3gLCopZerMjEogqkRAns0), subsampled to the 
assimilated times (12-17 UTC for normal stations, 23-5 UTC for mountain stations) for real 
observations, a prior simulation and the posterior simulation (‘optimised’). We can see that 
posterior simulation (in black) moves the simulated values closer to the observed values 
compared to the prior. This result is also quantified in the error plot below the timeseries, with 
the root mean square error (RMSE) and bias both decreasing, and the Pearson product-
moment correlation coefficient (‘r’) rising. However, compared to the inversion with only ICOS 
stations, the improvement in RMSE and bias is a lot more modest. Clearly, a positive bias 
remains when moving from prior to posterior data. 

Figure 17 summarises the quantitative results now for all ICOS stations in a bar plot. We can 
generally see similar trends as for Bilsdale, with RMSE values dropping, and R-squared (‘r2’) 
values rising. Exceptions are again the stations Křešín u Pacova and La Muela, which do not 
improve at all upon doing the inversion in terms of RMSE scores. What is notable, is that 
nearly all stations end up with a considerable positive bias after doing the optimization. This 
is contrary to the inversion with only ICOS stations – clearly now that ICOS stations and 
satellite data are available, the fit to the ICOS stations is not as good as it was before. The 
results point at systematic differences between the model-observation mismatches when 
comparing the simulations with ground-based and with satellite observations. This could 
originate from systematic differences between satellite and in-situ observations, but it could 
also hint at an incorrect representation of the vertical distribution of CO2 in ICON-ART (which 
is closely linked to the vertical distribution of CO2 in CAMS). Figure 18 shows a Taylor diagram 
summing up the results for all the stations, similarly showing and suggesting an improved 
performance when moving from the prior to posterior simulations; but a lesser improvement 
than was found with the ICOS-stations-only inversion. 

Figure 19 presents one example of a full 10-day cycle of OCO-2 column observations, as 
compared to the prior and posterior simulation runs. Only a very limited number of stripes are 
actually present even for a 10-day cycle. It is clear to see that, prior to the optimization, the 
spread in the simulated values does not correspond well to the spread in the observed 
columns, with a clear positive bias (the simulated column being larger than the observed 
column). After doing the inversion, the posterior is better able to capture the spread in the 
columns, with a clear improvement in performance. Figure 20 repeats this plot for all 10-day 
cycles, to give (1) an overview of the total coverage of OCO-2 data points for a full year and 
to give (2) an idea of the over-all reduced model-data-mismatch which appears to be around 
2 to 2.5 ppm nominally after optimization, which corresponds to the model data mismatch 
defined for the OCO-2 data. Furthermore, the observations drawn in the description of the 
previous figure hold here too: the spread in the error is reduced, and a positive bias is 
eliminated. Figure 21 summarises the misfit of the prior and posterior simulations for all 10-
day periods that were considered. In the violin plots we record the overall distribution of misfits, 
which is typically normally distributed but with a small positive bias in the prior that is moved 
towards zero in the posterior simulations. The average RMSE value and bias over each 10-
day period is reduced; the Pearson product-moment correlation coefficient is increased in all-
but-one cases. We can, moreover, see that the number of observations is not spread evenly 
over the full year – winter months have considerably less observations, likely due to cloud 
cover and higher solar zenith angles. 

Figure 22, Figure 23, and Figure 24 show a map of the yearly average anthropogenic, 
biospheric and background fluxes and associated 𝜆 values with which the prior fluxes (i.e., the 
state vector elements) are multiplied. Compared to the inversion with ICOS stations only, the 

map of 𝜆 values is not like an interpolated map between the values at various ICOS station 
locations. Instead, it does not seem to follow a particular spatial distribution at all. Moreover, 
compared to the ICOS-station-only inversion, the updates for both the anthropogenic and 
biospheric fluxes are considerably larger. For example, in the French Burgundy region, there 

https://meta.icos-cp.eu/objects/lVo3gLCopZerMjEogqkRAns0
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is a net release of CO2 following the online VPRM calculations, whereas in the previous 
inversion there was purely uptake of CO2. And, we see for example that the shipping fluxes 
are now modified where they weren’t before, as we now have access to data over sea. For 

the background values of  𝜆, we note that the mean value is approximately 1.00 instead of 
0.99. We can see over a full year average that the surface-level of the simulation has changed 
about -1 ppm after optimization compared to the prior simulation run. Clearly, the CAMS 
product (optimised with in-situ data) needs to be adjusted downwards when optimised with 
our in-situ and satellite data and our inversion set-up; but less so than when using only in-situ 
data. This also explains why a positive bias remains in the bar plot of the in-situ data (Figure 
17), as this inversion simply corrected the background down a bit less than the previous 
inversion. However, we see a lot more variation in the background field in this inversion 
compared to the last one, with larger updates to the scaling factor in every 10-day cycle. 

 

Figure 16: Example of simulated time-series for station Bilsdale (UK) with ICON-ART, when 
assimilating ICOS and OCO-2 data. Note how the satellite data improves the fit between 

simulations and observations in early June compared to the inversion with ICOS data only 
(just right of the 2018-06 line). 
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Figure 17: Inversion results with ICON-ART when assimilating ICOS station and OCO-2 data. 
Note that the full range of ICOS OBSPACK stations in the domain is shown here, at multiple inlet 
heights if applicable, this range is larger than the set of stations used for inverting the data. 



CoCO2 2023  
 

Intercomparison of national-scale inversion systems 46 

 

Figure 18: Taylor diagram for the inversion results with ICON-ART assimilating ICOS and OCO-
2 data; results improve when moving towards the star on the bottom horizontal axis. Each dot 
represents the performance on an ICOS station for a year of data (i.e., it represents the same 

information as the previous figure). 

 

Figure 19: One example of OCO-2 observations made during a complete 10-day cycle starting 
at 2018-05-02, for which observations are compared to ICON-ART prior (left) and optimized 

(right) total CO2 columns. The top set of plots shows the error between simulation and 
observed data, where a good match would correspond to a black drawn pixel. The bottom set 

of plots are scatter plots between the simulated and observed data, where a good match would 
place the point on the dashed black 1:1 line. It is clear that the prior simulated data has a 

positive bias that is largely eliminated after the optimization. 
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Figure 20: All OCO-2 observations made during all 10-day cycles, for which observations are 
compared to ICON-ART prior (left) and optimised (right) total CO2 columns. The top set of plots 
shows the error between simulation and observed data, where a good match would correspond 
to a black dot. The bottom set of plots are scatter plots between the simulated and observed 
data, where a good match would place the point on the dashed black 1:1 line. Every 10-day cycle 
is given a unique colour. It is clear that the prior simulated data has a positive bias and large 
spread, while after optimization the values lie closer to the 1:1 line. 
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Figure 21: OCO-2 misfits collected for each assimilation cycle with ICON-ART given ICOS and 
OCO-2 data (the start of each 10-day cycle is indicated on the horizontal axis). On the top we 
show violin plots of the prior and posterior error, on the other plots we show the RMSE, bias, 
correlation, and number of OCO-2 observations assimilated per cycle. It is clear that the column 
bias is virtually eliminated as a result of the data assimilation. Note how more observations are 
available over the summer months compared to the winter months. Note that, in this figure, the 
correlation coefficient is not related to what we saw for the ICOS stations (which showed the 
temporal correlation for a single station) but simply the correlation over all total columns for the 
assimilated 10-day period. 
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Figure 22: Full-year inversion results with ICON-ART assimilating ICOS station and OCO-2 data, 
for the anthropogenic component. Black dots on the map correspond to ICOS stations. 

 

 

Figure 23: Full-year inversion results with ICON-ART assimilating ICOS station and OCO-2 data, 
for the biospheric component. Black dots on the map correspond to ICOS stations. Note that 
some areas (e.g., the Burgundy region in France) exhibit yearly net positive vegetation fluxes 
after the inversion, unlike the case where we worked with just the ICOS stations. 
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Figure 24: Full-year inversion results with ICON-ART assimilating ICOS station and OCO-2 data, 
for the average background component. Inflow regions are denoted following major side - minor 
half side (e.g., ‘NW’ means from the top, on the left half, while ‘WN’ means from the left, on the 
top half). 

 

3.3.2.3 Gathering country-total results 

After carrying out the inversions with only in-situ ICOS stations and with in-situ ICOS stations 
plus OCO-2 total column observations, we can compute yearly country-scale emissions. 
Those results are given in Table 5 and graphically displayed in the bar plot of Figure 25. The 
country-total emissions are computed by multiplying the prior emissions with the estimated 𝜆 

values. The uncertainty for each country-total result is computed through √
∑36

𝑛=1 𝑔𝑇 𝐶𝑛  𝑔

362 , where 

𝐶𝑛 is the posterior covariance matrix of the state vector for lag 𝑛, and 𝑔 is a vector where each 
element corresponds to the proportion for which each cell belongs to a certain country. 

Table 5: The country-total inversion results with ICON-ART, in Mt CO2/yr. The value after ± is a 
very rough estimate of the uncertainty. ANTH stands for “anthropogenic emissions”, while 

NAT stands for “biogenic” emissions which are the VPRM computations plus forest fire fluxes, 
lateral fluxes and (positive) ocean fluxes. 

Country Prior ANTH POST ANTH 
ICOS 

POST ANTH 
ICOS+OCO2 

PRIOR NAT POST NAT 
ICOS 

POST NAT 
ICOS+OCO2 

Austria 88.2±7.3 89.6±6.9 104.5±6.6 -77.7±20 -81.8±17.7 -62.5±12.6 

Belgium 109.3±10.6 107±9.7 115.1±7.8 -11.2±10.7 -16.9±7.7 -1.6±6.9 

Croatia 17.5±1.5 17.6±1.5 19.2±1.5 -44±14.3 -42.2±13.4 -15.6±11.4 

Czechia 96±8.4 96.7±7.7 110.9±7.3 -53.3±21.2 -56.8±18.2 -112.5±13.2 

Denmark 44.5±3.8 45±3.5 46±3.6 -15.3±12.5 -23.3±11.5 -14.8±7.9 

France 385.8±20.6 383.2±17.6 390.2±17.0 -452.2±138.6 -537.3±103.3 -268±66.6 

Germany 855±54.2 835.3±46.6 960.1±38.7 -216.3±89.3 -250.4±60.6 -164.3±41.4 

Netherlands 156.6±14.5 152.5±13.0 157.6±10.2 9.6±9.8 4.6±6.8 8.2±6.2 

Slovenia 18.2±1.8 18.4±1.7 19±1.7 -40.7±10.5 -39.3±9.4 -16.9±7.6 

Switzerland 44.2±4.2 44.6±3.3 49.7±3.2 -33.2±9.1 -38.8±6.2 -26.9±4.0 

UK 376.8±27.2 390.1±24.1 353.1±23.0 -140.6±53.8 -187.9±43.6 -188.7±31.6 
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Figure 25: Bar-plot of country-total inversion results using the ICON-ART CTDAS setup, in Mt 
CO2/yr. The lines in black are a rough estimate of the standard deviation. 

3.3.2.4 Discussion 

We note a few points of discussion below. 

• The biospheric uptake as modeled here is too strong and does not seem accurate. The 

VPRM formulation implemented online in ICON-ART (in fact any version of VPRM) is not 

made to be neutral on a yearly basis (which is what one would, roughly, expect). Some 
comparisons with other models were performed that also simulate the net ecosystem 

exchange. The performance of the VPRM was rather similar to other models when 
looking at instantaneous or daily flux values (e.g., in comparison with SiB4 fluxes from 

the Carbon Tracker Europe which is close to neutral on a yearly basis by design, 

https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-
europe-carbon-tracker-europe-2017-2023). However, the VPRM fluxes have a small bias 

in the form of too little respiration, and this bias becomes large when summing the 
emissions over a large area and over a full year, leading to a large seeming uptake of 

CO2 where little to none would actually be expected. For example, over a yearly basis 
one can find a difference to a standard VPRM product for Europe (https://www.icos-

cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-

photosynthesis-and-respiration) as shown in Figure 26. What is clear is that the VPRM 
line (in blue) has a very similar order of magnitude, but too little respiration both in 

summer and winter days (or, too much gross photosynthetic production). But whereas 
the SiB4 product has a yearly flux over Europe that sums to about -0.0055 PgC/yr, the 

VPRM product has a yearly flux that sums to -1.4871 PgC/yr. Hence, the small 

differences add up to a large number. 

• The fact that the VPRM product leads to a large over-estimation of the CO2 uptake is not 

really corrected for by the inversions, although the inversion with the OCO-2 data 
appears to generally lead to less uptake. Still, it appears that (1) the uncertainties set to 

the prior VPRM fluxes are much too conservative, (2) it appears that the standard VPRM 

product is capable of producing realistic instantaneous fluxes but not too realistic yearly 

fluxes, (3) the multiplicative 𝜆 values on the net ecosystem are not capable of fixing this 

error (as increasing the nighttime respiration would require increasing the 𝜆 value, but 
this would also increase the daytime photosynthetic production), such that a better way 

https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-europe-carbon-tracker-europe-2017-2023
https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-europe-carbon-tracker-europe-2017-2023
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
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forward is perhaps to split respiration and photosynthesis parts into separate components 

of the state vector, and (4) perhaps the fact that we mostly have daytime observations 
both in the in-situ and total column data means we are somewhat biased to emissions 

during the afternoon hours, where the photosynthetic part generally dominates. 

• In general, we do not observe a ‘dipole’-like effect, where updates in the anthropogenic 

and biogenic fluxes are counteracting or compensating for each other – we generally 

observe that both anthropogenic and biogenic fluxes are moving similar directions, which 
builds some confidence in the system. 

• Both inversion results require us to decrease the background CO2 field. As the 
background field comes from the CAMS “inversion-optimised” product which was 

optimised with in-situ data, the surprise is that the update to the background field is 

largest in the optimization with only in-situ data. We have not looked into the reasons 
behind this feature in the data. It suggests, however, that there is some inconsistency 

between the OCO-2 and in-situ data. 
 

 

Figure 26: Plot of the daily biospheric carbon (C) flux summed over Europe for days in 2018, 
with the horizontal axis representing the day of the year, comparing ICOS-SiB4 
(https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-europe-
carbon-tracker-europe-2017-2023) to ICOS-VPRM (https://www.icos-cp.eu/data-
products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-
respiration). 

 

3.3.3 Methane inversion description 

In addition to the CO2 inversion described above, we shortly summarise results of a European 
methane (CH4) inversion performed with ICON-ART by (and documented in greater detail in 
Steiner et al., 2023). The inversion was performed in the context of the TransCom modelling 
community intercomparison. Concerning the model domain, the resolution is coarser by a 
factor of two (i.e., an effective grid spacing of about 26 km) which covers the entirety of Europe 
and neighbouring regions, resulting in a total of 21 344 cells, roughly the same as for the CO2 
inversion. The meteorological and atmospheric IC/BC come from the ERA-5 and CAMS 
inversion-optimised products (same as for the CO2 inversion). Two categories are optimised 
separately: anthropogenic and natural fluxes; in addition to that, 8 background components 

https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-europe-carbon-tracker-europe-2017-2023
https://www.icos-cp.eu/data-products/high-resolution-near-real-time-co2-fluxes-over-europe-carbon-tracker-europe-2017-2023
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
https://www.icos-cp.eu/data-products/biosphere-atmosphere-exchange-fluxes-co2-vegetation-photosynthesis-and-respiration
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are optimised for the same 8 inflow regions as for the CO2 inversion. The prior anthropogenic 
fluxes (agriculture, waste, and fossil fuels) come from the EDGAR v6.0 inventory. The natural 
fluxes correspond to peatland and mineral soils, inland water, termites, ocean, biofuels and 
biomass burning and geological emissions. Fluxes are considered constant for each 10-day 
window that is assimilated, and emitted in the lowest model level (0 to 20 m altitude). Like the 
CTDAS set-up for CO2, we consider overlapping cycles of 2 10-day windows. We use 100% 
uncertainty for the fluxes in the prior error covariance matrix, and an exponentially decaying 
correlation length scale of 200 km, and generate the 192 ensemble members for the 
anthropogenic and natural emissions, while using an uncertainty of 0.05% uncertainty for the 
background (corresponding to roughly 1 ppb CH4). The observation stations are ICOS stations 
with the addition of 10 flask sample locations. The model-data mismatch (i.e. the model plus 
observation error) is set to 10 ppb + 30% of the yearly mean signal from the anthropogenic 
and natural emissions (as modelled with ICON-ART). 

The results of the 2018 inversion are shown in Figure 27. The anthropogenic emissions show 
a strong upward correction in northwestern Europe of up to 25 mg/m2/day in the Benelux 
countries, and more moderate upward corrections in northwestern France and southern 
England. In terms of annual means, natural fluxes are corrected downward almost 
everywhere, particularly over Italy (-22%). The national scale inversion results for 2018 are 
shown in Table 6, the results for 2021 are shown in Table 7, and both are plotted in Figure 28. 
The trends for the 2021 inversion are fairly similar to those found for 2018.  The downward 
correction of the natural fluxes in Italy (very pronounced in the 2021 results) is most likely due 
to the very high a priori geological emissions in these regions (it is clearly visible in Figure 27 
that the prior emissions are markedly stronger for Italy and Romania compared to other 
European countries). We refer again to Steiner et al. (2023), where the CTDAS set-up is 
validated with further synthetic tests, and results are presented (also for the years 2008 and 
2013) in greater detail. 

 

Figure 27: Yearly (prior and posterior) CH4 emissions over Europe as derived with ICON-ART 
with ICOS in-situ and flask sampling stations. Figure taken from Steiner et al. (2023). 
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Table 6: The country-total inversion results for 2018 with ICON-ART, in Tg CH4/yr. The value 
after ± is a very rough estimate of the uncertainty. ANTH stands for “anthropogenic 

emissions”, while NAT stands for natural fluxes. The results are described in more detail in 
Steiner et al. (2023). 

Country Prior ANTH POST ANTH  PRIOR NAT POST NAT 

Austria 0.39±0.05 0.26±0.02 0.09±0.04 0.08±0.03 

Belgium 0.65±0.07 0.71±0.04 0.02±0.01 0.02±0.01 

Bulgaria 0.33±0.05 0.31±0.05 0.09±0.05 0.09±0.05 

Switzerland 0.19±0.03 0.13±0.01 0.05±0.02 0.04±0.02 

Cyprus 0.02±0.01 0.02±0.01 0.00±0.00 0.00±0.00 

Czechia 0.49±0.06 0.35±0.03 0.06±0.03 0.05±0.03 

Germany 2.43±0.24 2.55±0.10 0.22±0.10 0.20±0.09 

Denmark 0.24±0.05 0.15±0.02 0.05±0.04 0.05±0.03 

Estonia 0.10±0.02 0.05±0.01 0.04±0.03 0.04±0.03 

Greece 0.36±0.08 0.31±0.08 0.05±0.05 0.05±0.05 

Spain 1.53±0.20 1.39±0.18 0.03±0.09 0.03±0.09 

Finland 0.65±0.10 0.23±0.03 0.42±0.11 0.31±0.08 

France 2.50±0.27 2.40±0.13 0.17±0.11 0.16±0.10 

Croatia 0.20±0.03 0.15±0.02 0.03±0.02 0.03±0.02 

Hungary 0.31±0.05 0.28±0.04 0.04±0.03 0.04±0.03 

Ireland 0.66±0.09 0.39±0.05 0.08±0.04 0.05±0.03 

Italy 1.35±0.10 1.05±0.05 1.14±0.21 0.84±0.16 

Lithuania 0.15±0.04 0.13±0.03 0.02±0.02 0.02±0.02 

Luxembourg 0.02±0.00 0.02±0.00 0.00±0.00 0.00±0.00 

Latvia 0.08±0.02 0.07±0.02 0.03±0.02 0.03±0.02 

Malta 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

Netherlands 0.66±0.07 1.01±0.04 0.04±0.02 0.04±0.02 

Poland 2.25±0.22 1.58±0.11 0.26±0.10 0.24±0.09 

Portugal 0.32±0.06 0.31±0.06 0.01±0.03 0.01±0.03 

Romania 0.77±0.07 0.67±0.06 0.85±0.18 0.73±0.16 

Sweden 0.38±0.06 0.13±0.02 0.55±0.14 0.33±0.10 

Slovenia 0.13±0.02 0.08±0.01 0.01±0.01 0.01±0.01 

Slovakia 0.22±0.03 0.15±0.02 0.04±0.02 0.04±0.02 
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United 
Kingdom 

1.49±0.14 1.59±0.08 0.50±0.16 0.40±0.13 

 

Table 7: The country-total inversion results for 2021 with ICON-ART, in Tg CH4/yr. The value 
after ± is a very rough estimate of the uncertainty. ANTH stands for “anthropogenic 

emissions”, while NAT stands for natural fluxes. The results are described in more detail in 
Steiner et al. (2023). 

Country Prior ANTH POST ANTH  PRIOR NAT POST NAT 

Austria 0.39±0.05 0.28±0.02 0.09±0.04 0.07±0.03 

Belgium 0.65±0.07 0.59±0.03 0.02±0.01 0.02±0.01 

Bulgaria 0.33±0.05 0.25±0.04 0.09±0.05 0.08±0.05 

Switzerland 0.19±0.03 0.17±0.01 0.05±0.02 0.04±0.02 

Cyprus 0.02±0.01 0.02±0.01 0.00±0.00 0.00±0.00 

Czechia 0.49±0.06 0.42±0.03 0.06±0.03 0.05±0.03 

Germany 2.45±0.24 2.44±0.08 0.23±0.10 0.19±0.08 

Denmark 0.24±0.05 0.16±0.02 0.05±0.04 0.04±0.03 

Estonia 0.10±0.02 0.07±0.01 0.05±0.03 0.05±0.03 

Greece 0.36±0.08 0.24±0.06 0.05±0.05 0.04±0.05 

Spain 1.54±0.22 0.95±0.14 0.01±0.08 0.01±0.07 

Finland 0.66±0.09 0.26±0.03 0.43±0.11 0.28±0.08 

France 2.51±0.28 2.10±0.11 0.16±0.10 0.14±0.09 

Croatia 0.21±0.03 0.18±0.02 0.03±0.02 0.03±0.02 

Hungary 0.31±0.05 0.21±0.03 0.04±0.03 0.04±0.03 

Ireland 0.66±0.09 0.60±0.05 0.07±0.04 0.05±0.03 

Italy 1.36±0.10 0.67±0.05 1.14±0.21 0.34±0.11 

Lithuania 0.15±0.04 0.13±0.03 0.02±0.02 0.02±0.02 

Luxembourg 0.02±0.00 0.02±0.00 0.00±0.00 0.00±0.00 

Latvia 0.08±0.02 0.07±0.02 0.03±0.02 0.03±0.02 

Malta 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

Netherlands 0.67±0.07 0.85±0.03 0.04±0.02 0.04±0.02 

Poland 2.26±0.22 1.24±0.09 0.27±0.10 0.23±0.09 

Portugal 0.32±0.07 0.29±0.06 0.01±0.02 0.01±0.02 

Romania 0.77±0.07 0.61±0.05 0.85±0.18 0.74±0.16 

Sweden 0.39±0.06 0.19±0.03 0.58±0.14 0.32±0.10 
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Slovenia 0.13±0.02 0.08±0.01 0.01±0.01 0.00±0.00 

Slovakia 0.22±0.03 0.06±0.01 0.05±0.02 0.03±0.02 

United 
Kingdom 

1.50±0.15 1.53±0.07 0.48±0.15 0.36±0.12 

 

 

Figure 28: Bar-plot of country-total inversion results using the ICON-ART CTDAS setup, in Tg 
CH4/yr. The results are described in more detail in Steiner et al. (2023). 

 

3.4 ICON-ART-DWD for CH4 inversions from in situ observations (DWD) 

Different aspects of the development of a greenhouse gas (GHG) inversion system at DWD 
have been pushed forward as part of this project. A general concept described in Section 3.4.1 
combines the assimilation of GHG concentrations and the inversion of GHG emissions. This 
concept serves as a guideline on the path towards a flexible GHG inversion system integrated 
into the weather prediction service at DWD. As a special case of this concept, a simplified 
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inversion of the emissions without a simultaneous concentration assimilation has been 
implemented. This test case is described in Section 3.4.3. 

 

3.4.1 Model description 

The modelling of the CH4 concentrations is carried out using the ICON (ICOsahedral Non-
hydrostatic)-ART (Aerosols and Reactive Trace gases) model in the limited area mode. The 
Copernicus Atmosphere Monitoring Service (CAMS) provides the necessary initial and 
boundary concentration fields for the simulation setup. The modelled methane concentrations 
are compared to in-situ observations at the ICOS towers. 

 

3.4.1.1 Transport model 

ICON is the numerical weather prediction model used by DWD. It is developed in collaboration 
with the Max-Planck Institute for Meteorology (MPI-M) and other partners. The ICON model 
solves the fully compressible nonhydrostatic atmospheric equations of motion. 

The discretization of the model equations of ICON is performed on an icosahedral-triangular 
Arakawa-C grid, with a choice of resolutions obtained by successive refinement of a spherical 
icosahedron. The mass points are located in the circumcenter of each triangular cell. To 
optimise runtime efficiency, there is a distinction between so-called fast-physics processes 
(e.g. cloud microphysics, turbulence), which are calculated at every physics time step, and 
slow-physics processes (e.g. radiation), which may be called at longer time steps and provide 
tendencies to the dynamical core that remain constant between two successive calls of the 
parametrization. Fast-physics processes are treated with operator splitting, which means that 
they act on an atmospheric state that has already been updated by the dynamical core, 
horizontal diffusion and the tracer transport scheme. 

A mass conserving transport module ART (Aerosols and Reactive Trace gases) is developed 
in collaboration with KIT Karlsruhe. The tracers in ICON-ART are transported in the same way 
as ICON tracers, ensuring tracer mass continuity, and it predicts the large-scale redistribution 
of tracer in the atmosphere due to air motion. Tracer transport is accounted for in a time-split 
fashion, this means that vertical and horizontal transport is treated separately. 

ICON-ART provides an XML interface which adds a-priori emissions from available point and 
area sources.   While the area emission sources have to be stored as mass flux densities in 
units of kg m-2 s-1 in a specific directory structure, the strength of point sources has the unit of 
kg s-1. The ART XML interface allows for the distinction between different transport types 
(stdchem, stdaero) and properties (chemical, passive, aerosol) of ART tracers. The emission 
datasets for area sources must be provided on the ICON grid. 

While the initial data here denote the state of the atmosphere (meteorological and CH4 
concentration fields) at the start of the model run, the boundary conditions shall denote the 
data in the lateral boundary zone where the model is forced by the meteorological and CH4 
concentration data outside the domain. We used DWD's operational numerical weather 
prediction output as meteorological boundary conditions. 

The CAMS data used for our initial and boundary conditions for CH4 concentrations are 
provided with vertical coordinates on a hybrid sigma-pressure system. Thus, these data need 
to be interpolated horizontally and vertically to the height-based SLEVE coordinate system 
used by ICON. A linear interpolation was used to generate hourly data for boundary conditions 
from the CAMS fields which have a 3h temporal resolution. 

The fields for meteorological parameters are initialised daily by using DWD's operational data. 
The atmospheric CH4 concentrations are initialised with the CAMS data only for the first day 
and then propagated using the ICON-ART Limited Area Mode. 
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To run a simulation setup with hourly output for longer time periods, the Basic Cycling 
environment (BACY) tool is used. 

 

 
Figure 29: Example CH4 concentration output of the ICON-ART forward run in limited area 
mode fed by CAMS boundary conditions and CAMS emissions for the lowest model level. 

  
3.4.1.2 Prior fluxes 

We use anthropogenic greenhouse gas emissions provided by Copernicus/TNO (CAMS-
REG-GHG_v5_1_emissions_year2018.nc). As they are on a different grid, we have to 

preprocess these emissions to use them in the ICON model. They need to be mapped onto 
the ICON triangular grid in a mass-conserving manner. The emissions within a single 
ICON grid cell are summed up and assigned to the latitude and longitude of the ICON 
cell midpoint (see Figure 30). For the results presented here, we considered time-
constant fluxes. 

 

Figure 30: Preprocessing from the TNO grid to the ICON grid conserves mass. 
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3.4.1.3 Assimilated observations 

For the inversion we use hourly in-situ methane concentration observations from 19 ICOS 
stations available from the ICOS-Portal. The stations that provide data for summer 2018 
include ICOS towers with multiple sampling heights and are listed in Table 10. Importantly, 
the selection of 19 stations was made only for a minimal test case as more data—including 
the ICOS obspack stations—are available and currently being integrated in our inversion 
system. 

 

3.4.2 Data assimilation and inversion concept 

The general framework that is being implemented at DWD is designed as a weakly-coupled 
GHG data assimilation scheme combining meteorology and GHG concentrations. It combines 
the three tasks of (1) describing the current meteorological state of the atmosphere, (2) 
describing GHG concentration fields in the atmosphere, and (3) estimating the GHG fluxes. 
GHG concentrations and fluxes are assimilated jointly, but the meteorological state is treated 
separately (see Figure 31). The ensemble-based approach builds upon the data assimilation 
system used for the numerical weather prediction (NWP) at DWD. 

Each ensemble member in an ICON-ART run consists of both the meteorological and 
concentration/flux fields. For each ensemble member, the output (first guess) is split into two 
parts: the meteorological fields and the part containing the concentrations/fluxes. Each part is 
separately presented as an input to the meteorological and GHG data assimilation systems, 
respectively. Each of these two systems generates a new meteorological and GHG analysis 
ensemble. The ensembles are then merged together (thereby maintaining the previous one-
to-one relationship among the members) to set up the ensemble for the next ICON-ART run. 
This procedure is cyclically repeated. 

 

 

Figure 31: The weakly-coupled GHG data assimilation scheme (here with an illustrative 
ensemble size of five). 

 

3.4.2.1 General data assimilation setup 

We now take a closer look at the blue “GHG DA” block of Figure 31. In a first implementation, 
the GHG data assimilation system will be based on the OmniVAR with different realisations of 
the B-matrix. Moreover, the OmniVAR is to be extended in such a way that the simultaneous 
treatment of the flux inversion problem is possible. 

The OmniVAR is part of DWD’s Data Assimilation Coding Environment (DACE) and was 
designed for a generic and efficient treatment of the minimization part which is common for 
most variational algorithms for data assimilation: Determine the analysis xa as best state 
approximation by minimising the distance to a first guess xb and the deviation from 
observations y, i.e., 
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with observation operator H, background error covariance matrix B and observation error 
covariance matrix R. Setting the gradient of the expression in brackets to zero, the solution 
can be obtained in two steps (as done for 3DVar and EnVAR): First, solve 

 

for z and then do the post-multiplication 

. 

Moreover, the OmniVAR provides a framework for the whole variational data assimilation 
setup by defining interfaces to other parts of the DACE code and preparing code templates, 
data structures and procedures for the post-multiplication as well. 

 

3.4.2.2 Extensions to GHG data assimilation and flux inversion 

So far, the state vector x for atmospheric data assimilation only contained atmospheric 
variables which were chosen to provide the NWP model with initial values. Of course, these 
initial values should represent the atmospheric state as accurately as possible (being the main 
goal of atmospheric data assimilation). Now, as we are also interested in flux inversions, the 
state vector is extended as described in the following lines. 

We consider a fixed point in time. Let xc denote the concentration of a GHG species in the 
atmosphere and let xe denote the fluxes (e.g. emissions) from the Earth’s surface in some 
bounded domain. We introduce 

 

as state vector (with some natural numbers nc, ne > 1) and observe that its background error 
covariance matrix takes the form 

 

where Bcc and Bee describe the background error covariance matrices for the concentration 
and fluxes, respectively, and Bce = BT

ec describe the covariances between concentrations and 
fluxes mutually. Furthermore, we observe that the fluxes do not have a direct impact on the 
observations, but indirectly via the concentrations built up so far. As a consequence, the 
observation operator takes the form  

 

with 

 

being the linear interpolation operator which maps the species concentration to the pointwise 
spatial locations of the observations; and for the observation error covariance matrix we have 

. 

Now, by substituting the quantities with their vector counterparts, the update equation reads 
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with 

 

respectively. Note that thanks to the vector 

, 

the implementation of the extension of the OmniVAR can be made in such a way that besides 
a simultaneous calculation of both the concentration and flux updates it is also possible to 
calculate only one of them. 

 

3.4.3 Simplified inversion 

While the concept described in Section 3.4.2 is not yet fully implemented, we use simpler test 
cases. Here we describe an inversion of methane emissions over a two-month period aiming 
at determining scaling prefactors for emissions from different categories. This method—called 
synthesis inversion—is the simplest special case for the previously described concept as it is 
technically implemented like a GHG inversion with a static ensemble. 

We choose June and July 2018 as a study period to facilitate comparisons with other project 
partners, and focus on emissions from Germany. However, this test run mainly aims at 
demonstrating the main ideas and learning about possible difficulties, and it is not expected to 
provide meaningful results. 

 

3.4.3.1 Synthesis inversion method 

We split the a priori emission estimate into a handleable set of categories. The inversion task 
is to adjust scaling prefactors for emissions from these different categories. Here we only 
categorise emissions by area, but separation by sectors is planned in the future. Since we aim 
to validate the overall emissions from Germany, we select these emissions as one category. 
Emissions from outside Germany are split in the four categories North-West, North-East, 
South-West, and South-East (see Figure 32). We optimise the scaling factor for each category 
to match the observed methane concentrations, computing also the uncertainties and 
correlations of all scaling factors. 

Besides the emission categories, a global, time-constant bias in the methane concentrations 
was allowed in the inversion as a simplified approach to account for uncertainties in the initial 
and boundary conditions. 

For the inversion, we need to assign uncertainties to the comparison of observations and 
model results. We assume that all considered observations—described in Section 3.4.1.3 — 
are independent. To compare the in-situ observations to the concentrations on our model grid, 
we use a simple inverse-distance-weighted horizontal interpolation and a linear interpolation 
in the vertical direction. To account for uncertainties arising from this interpolation, the choice 
of model-equivalent heights, transport uncertainties, and for other uncertainties in our model, 
we assume uncertainties of 100, 150, and 200 ppb in the model-observation mismatch. A 
comparison of results for these different uncertainties is provided in Table 8. 

We compute posterior scaling factors for multiple time series, each consisting of multiple 24h 
inversion time windows. More precisely, we consider 10 partially overlapping time series 
starting every 5 days and each lasting 15 days, which in combination cover the 60 days of our 
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forward simulation. Within each time series, a new inversion is calculated for each day (starting 
at 0 UTC). The posterior emissions of the previous day are used as prior for the next day. 
When starting a new time series, the prior is reset to the initial estimate with all emission 
scaling factors set to 1. 

At the beginning of each assimilation time window, a so-called background concentration is 
defined as the methane that is currently in the atmosphere. To calculate this background, we 
use the scaling factors obtained for the previous day in the same time series. Here we assume 
that the emissions are constant in time and that the transport model is linear. Thus, we adjust 
all emissions that were released into the atmosphere before the considered time window. 
Once the background is fixed, we can assimilate the scaling prefactors for the emissions that 
occurred during the given assimilation window using all observations during this time window. 

3.4.3.2 Results 

We present preliminary results for a synthesis inversion with very simplified emission 
categories. These results are not expected to yield an improvement of the prior emissions, but 
shall rather help identify obstacles and potentials for the further development of the inversion 
method. 

In our analysis we first note that the synthesis inversion yields temporal variations of the 
scaling factors together with an overall trend. For different measurement and prior 
uncertainties, this trend yields the estimates in Table 8 and Table 9 which are compatible with 
the prior of value 1 for each area. 

 

Table 8: Scaling factors with their uncertainty estimates for different uncertainties of the 
model-observation comparison (left column). The area emissions for Germany (DE) and the 

remaining areas (NW, NE, SE, SW) have a prior of 1 with uncertainty 10%, and the 
concentration bias offset (BO) has a prior of 0. The global concentration bias is obtained by 

multiplying its scaling factor with 50 ppb. The uncertainty is determined by the variation of the 
results from different time series. 

 

 

To obtain reasonable results, we need to assume a comparably large model-observation 
uncertainty of 150 ppb. This high uncertainty signifies the relevance of estimating uncertainties 
in the meteorology or in the initial concentrations for the improvement of the inversion method. 
We assume that this global uncertainty estimate can be reduced significantly when explicitly 
accounting for the transport uncertainty. 

To estimate the uncertainty in the computed scaling factors, we compare 10 different time 
series. Since we use overlapping time series with correlated results, we simply take the 
standard deviation of the 10 different scaling factors for each area. 
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Table 9: Scaling factors for different prior uncertainties. The prior uncertainties of the area 
scaling factors are given in the left column. All other parameters are as in Table 8, with a 
measurement uncertainty of 150 ppb. 

 

 

 

 

Figure 32: According to region, the emissions from Germany, from the North-West, North-East, 
South-East and South-West sectors were scaled separately with a model-observation 

mismatch uncertainty of 150 ppb and a prior uncertainty of 10%. 

 

To validate our results and check the dependence on individual stations, we compare 
inversion results when excluding individual stations in Table 10. This shows a comparably 
strong effect of the station Ispra (IPR) on the posteriori emission estimate not only in the south-
east region, but also in Germany. 

 

 

Figure 33: Scaling factors of the five areas obtained with a model-observation mismatch 
uncertainty of 150 ppb and a prior uncertainty of 10%. 
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The presented results highlight the relevance of various possible improvements of the method, 
which we summarise in the following: 

Uncertainty estimation and validation: One main focus of the further development of the 
method lies in the better assessment and the reduction of uncertainties. To begin, our model 
equivalents for the measurements can be improved by a better interpolation between grid 
cells. Also, an optimal choice of model heights corresponding to the observation heights may 
improve the comparison between model and observations. A major improvement is expected 
from systematically taking into account uncertainties in the transport model by using 
meteorological ensembles. 

Longer analysis times: Running an inversion with a long assimilation time window for a 
forward model like the ICON—for which no adjoint model exists—requires a careful treatment 
of temporal correlations. The synthesis inversion is particularly well suited for this task and 
can in principle be used for long time windows. Choosing a good time window for an inversion 
requires an understanding of uncertainties of the transport model, which will be obtained using 
meteorological ensembles. Further improvement of longer inversions is expected when 
considering uncertainties in the boundary conditions of our limited area model. A clear goal is 
to leverage the potential of long assimilation windows in a longer run of the forward model for 
a whole year. A comparison of our forward model results to an independent concentration 
assimilation may help understanding the potential and risks of such long-time calculations. 

Resolution and choice of emission areas: A detailed analysis requires more emission 
categories from different sources. These can be given by splitting the covered area in many 
patches, and by using multiple emission categories within the same area, associated with 
different sectors. In any case, this means including more emission categories in each run of 
the forward model. This also opens a path to assessing the uncertainty associated with this 
parametrization of the emissions, as we can check how the results change if we lower the 
number of parameters by coupling scaling factors for different categories. 

More input data: Both the concentration observations and the prior emission estimates could 
be improved by using more information. Using more observations and possibly other 
observation types is expected to make our inversion more stable. For the emission estimates, 
taking into account modelled time-dependence may improve the results. 

Lessons learnt: In addition to the ideas for improvement summarised above, this 
demonstration of our model has drawn our attention to many important technical details that 
will lead to an improvement of the accuracy and reliability of our results. For example, we have 
noted the relevance of nonlinearities in the transport model, which can be corrected for by a 
simple linearization in further calculations. 
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Table 10: Dependence of scaling factors on individual stations. Given are scaling factors for an 
inversion excluding the station in the left column. All parameters are as in Table 8, with a 
measurement uncertainty of 150 ppb. We find that leaving out the station Ispra (IPR) has the 
strongest overall effect on the scaling factors. 

 

 

3.5 WRF analytical inversion for CO2 using in situ observations (AGH) 

3.5.1 Model description 

3.5.1.1 Transport model 

We use WRF v.4.4.1. as the transport model. WRF-ARW is an Eulerian NWP model 
developed in a collaboration headed by the US National Center for Atmospheric Research 
(NCAR). It integrates the non-hydrostatic, fully compressible Euler equations in flux form on a 
terrain-following mass-based vertical coordinate. The WRF model has been successfully 
applied from global to microscale, with effective downscaling possible through one- or two-
way nesting.  

In our configuration, the model is run as a limited area model. The spatial extent of the model 
domain covers Central Europe, as displayed in Figure 34. Two nested high-resolution domains 
were primarily run for CoCO2 tasks associated with other deliverables, thus their respective 
description is omitted. The primary domain (d01) is run at 5 km x 5 km spatial resolution with 
80 vertical levels, spanning vertically up to 50 hPa (approximately 21 km m.a.s.l.). The vertical 
levels are variably distributed, with their density increasing non-linearly towards the surface 
(with typically 30 levels below 3000 m.a.g.l.). Temporal resolution of the model is 20 seconds. 
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Figure 34: Spatial extent of the WRF-GHG modelling domain framework applied by AGH for 
CoCO2. Internal domains (blue rectangles centered around Kraków, southern Poland) were 

used for city-scale simulations within Task 4.3.2. 

We use ERA5 data for meteorological boundary conditions, downloaded from its official 
repository (Climate Data Store) at 0.25° x 0.25° horizontal and 137 pressure-level vertical 
resolution. 

For our experiment, WRF was configured with the Thompson microphysics scheme, RRTMG 
schemes for longwave and shortwave radiation, revised MM5 scheme for surface layer 
physics, and the Noah-MP land surface model. The Grell 3D cumulus parameterization was 
enabled in the parent domain. Due to our internal domains running in grey-zone horizontal 
resolutions, we have applied the Shin Hong PBL scheme in all nests. Full instantaneous model 
output was saved every 15 minutes. For comparisons against hourly observations, averages 
were calculated using respective instantaneous values from the model. 

To simulate atmospheric mole fractions of CO2, we have used the GHG module from the WRF-
Chem suite, distributed with the model code, which was developed specifically for greenhouse 
gas simulations (this framework is referred to as WRF-GHG, (Beck et al., 2011)). The tracers 
in the model are run as fully passive and advected internally every model timestep. To 
represent influences from beyond modelled domain, a single background tracer was advected 
through the modelling system (co2_bck). Its initial and lateral boundary conditions were 
assigned from the interpolated CAMS product “Global atmospheric concentrations inferred by 
atmospheric inversion”, as per the modelling protocol. As the CAMS product and our WRF 
domain were available on different spatial grids, we used bilinear regression for horizontal 
interpolation, and linear interpolation in both vertical and temporal dimensions in order to 
provide the necessary input for our model framework. 
 
In order to minimise the discrepancy between the modelled and actual meteorology without 
using the formal meteorological data assimilation (or nudging), we have applied a 24-hour 
meteorological restart system. The simulated periods were executed as a sequence of partially 
overlapping 30-hr model runs starting at 18:00 UTC, with the first 6 hours being used for 
meteorological spinup. At midnight between day 0 and day 1, the CO2 tracers were copied 
from the previous day’s simulation – except for the very first day in the sequence, when the 
previous day’s data were not available. The advantage of this approach is that every 24 hours, 
the model is reinitialized from ERA5 initial conditions, thus preventing a large departure of 
meteorological variable values from the observations. This approach has been tested in past 
scientific studies, first adopted by Ahmadov et al. 2007. 

 

3.5.1.2 Prior fluxes and assimilated observations 

As input, we’ve used the following prior fluxes: 
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• Prior anthropogenic emission fluxes: based on TNO_GHGco_6x6km_v4_0_year2018 
inventory for the year 2018, and TNO_GHGco_6x6km_v5_0_year2021 for year 2021. 

Vertical profiles and temporal profiles were used as specified in the TNO dataset. No 

explicit plume-rise mechanism was applied. Following category aggregates (chosen 
based on the annual fluxes in the region of interests, so that the emissions followed by 

each tracer were of the same order of magnitude) were used as priors: 

• gnfr_a – corresponding to GNFR A category only (power generation, public) 

• gnfr_b – GNFR B (industry) 

• gnfr_c – GNFR C (other stationary combustion) 

• gnfr_fgi - sum of emissions from GNFR categories F1–F4, G and I (transport, shipping, 

offroad) 

• gnfr_other – sum of all remaining emissions (fugitive emissions, solvents, aviation, waste, 
agriculture) 

• Prior biospheric fluxes: pre-computed offline VPRM fluxes as provided within the T4.4 
protocol, 

• Prior forest fire fluxes: Global Fire Emissions (GFAS, 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-
gfas?tab=overview). Daily emissions used. Surface emissions only, temporal profile 

constant over the day. 

• Prior ocean emissions: provided by Cyril Germineaud at Mercator (as per protocol). 

Monthly values used. Surface emissions / uptake only, no vertical profile, the temporal 

profile is constant over time. 

• Prior lateral fluxes: from Frederic Chevallier (as per the protocol); computed as sum of 

the following variables (from the input file): 'allcropsource', 'allwoodsource', 

'biofuelcropsource', 'lakeriveremis', 'biofuelwoodsource'. No vertical profile, surface 
emissions only. The temporal profile is constant over time. 

 
In order to allow the optimization of subregions of our domain, we have applied spatial masks 
to the anthropogenic and biogenic fluxes for optimization of national fluxes of Poland (PL) and 
Germany (DE). Other countries were not considered due to computational constraints. 
 
A total of 25 tracers were simulated for the purpose of this deliverable. These were: 

• co2_bck: Background tracer 

• co2_ocean: Tracer of ocean emissions 

• co2_lateral: Tracer for lateral CO2 fluxes 

• co2_bbu: Tracer for biomass burning 

• co2_vprm_gpp_[region]: CO2 flux of Gross Primary Production (photosynthetic uptake) 
from VPRM model, geographically divided into 3 regions of interest: PL, DE, and 

remaining part of the domain (rest) 

• co2_vprm_resp_[region]: CO2 flux of heterotrophic respiration from VPRM model, 

geographically divided into 3 regions of interest: PL, DE, rest 

• co2_gnfr_[anth_group]_[region]: 15 tracers of anthropogenic CO2 fluxes, five for each 
region of interest (PL,  DE,  rest), based on TNO_GHGco_6x6km_v4_0 product provided 

within the Work Package.  
 
All the other tracers were emitted exclusively into (or subtracted from) the first model layer, 
between 0 and 25 m agl. 
 
For each geographic region, five anthropogenic tracers were created in order to follow 
emissions from one or more subcategories of the input data.  
 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas?tab=overview
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We have assimilated surface station data from the European Obspack compilation product, 
based on GlobalviewPlus_v8 (ICOS RI, 2023), which contains stations from the ICOS network 
supplemented by data collected at two surface sites located in Poland (BIK - Białystok, and 
KAS - Kasprowy Wierch). We have also excluded stations located close to our domain 
boundaries (to avoid boundary effects). Finally, in the course of the analysis we have excluded 
two stations heavily influenced by local sources (HEI, ISP), as our model was not able to 
represent the variability well, and thus these affected the results disproportionately. The full 
list of stations and inlet altitudes (highest available) from which data was assimilated in the 
runs is as follows: 
 
BIK 300 m, BRM 212 m, GAT 341 m, HEL 110 m, HPB 131 m, HUN 115 m, HTM 150 m, JFJ 
5 m, JUE 120 m, KAS 7 m, KIT 200 m, KRE 250 m, LIN 98 m, LUT 60 m, OXK 163 m, PRS 
10 STE 252 m, TOH 147 m, WES 14 m, ZSF 3 m. 
 
The exact locations of the measurement sites are available with the dataset. Local solar time 
was calculated for each station. Afternoon (LT 11-16) data was selected in the inversions, 
except mountain stations, for which night time data was selected (LT 23-04). 
 

3.5.1.3 State vector 

The state space in our framework was defined as linear scaling factors of the a-priori 
emissions, with a single value for each state space member across the modelled period (i.e. 
we considered 4 identical and independent state spaces for our four modelled periods). We 
optimize them using the analytical inversion formula that optimizes the cost function 

 

by means of resolving the linear system of equations: 

 

The notation above follows Rodgers (2000). 

In all our inversions, we assume perfect knowledge of ocean, lateral and biomass burning 
fluxes. These were subtracted from the observational data prior to running the inversion. 

To represent uncertainty of the transport model and observations, we construct the transport 
error covariance matrix from two components assuming a model-data mismatch of 8 ppm, 
with roughly a third of the mismatch (3 ppm) temporally correlated (exponentially decaying 

with 𝜏 of 180 minutes). 

We assume a priori emission uncertainty as fully uncorrelated and equal: 10% for 
anthropogenic emissions and 50% for biogenic components, regardless of the level of 
aggregation. The inflated values of the anthropogenic fluxes (as compared to the values 
reported e.g. within UNFCCC National Inventory Reports, where they are reported as close to 
2-3% depending on the emission sector) is due to two main considerations: 

a) we take into the account hourly fluxes over limited time periods; annual fluxes can be 
much better constrained, as in many cases the emission factors used for emission 
estimations rely on accurately monitored proxies, for which higher resolution data are 
not available, 

b) we use temporal factors provided by TNO that are, again, based on standardised 
activity data not based on actual activity information. The uncertainty of these factors 
was not provided and is difficult to assess. 

The uncertainty values for biogenic emissions were assigned based on consensus within the 
task group, literature overview and finally results of the sensitivity tests performed within the 
scope of the project (values of 50%, 100% and 200% were tested). 
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Due to the structure of the framework and high speed of computations, we were able to test 
multiple configurations of the state vector of various complexities. The simplest were 
constructed with the state space consisting of aggregated biogenic (GPP + RES) and 
anthropogenic (sum of all components) fluxes, and the most complicated built from the full 
suite of available biogenic and anthropogenic tracers (21 members) plus an extra state space 
element for background adjustment 

Following these tests, we have opted on running the system in two modes for the purpose of 
this report: 

• full state space with variable background, and 

• reduced state space with variable background. 

 
In the full state space, we adjust scaling factors associated with all the tracers described in 
the previous section, allowing for optimization across both emission sectors and geographical 
regions. 

In the reduced state space configuration, we aggregated all the anthropogenic tracers into 
their respective sum, allowing us to optimise the full anthropogenic flux from Poland and 
Germany. We also aggregated the respiration and net ecosystem exchange fluxes, forcing 
the system to effectively optimise the net CO2 flux. This second, simpler configuration is 
considered closest to classical, previously published studies, as those former works primarily 
dealt with optimization at this level of detail at most (in terms of treating natural and 
anthropogenic fluxes).  

 

3.5.1.4 Period of study 

Due to the limits of the computational costs, primarily stemming from necessary high-cost 
computations of city-scale emissions, we have limited the period of study for the national scale 
inversions to the four separate monthly periods defined as reference months in the T4.4 
protocol. 

The simulated analysis periods were as follows: 

• winter 2018: Feb 1st, 00:00 UTC – Mar 1st 00:00, 2018 

• summer 2018: Jul 1st, 00:00 UTC – Aug 1st 00:00, 2018 

• winter 2021: Feb 1st, 00:00 UTC – Mar 1st 00:00, 2021 

• summer 2021: Jul 1st, 00:00 UTC – Aug 1st 00:00, 2021 

 
For each of the aforementioned periods, separate inversions were run, independent of each 
other. A 10-day spin-up period was executed prior to the listed analysis periods in order to 
flush the model domain and reduce the influence of initial conditions on the optimization 
process. 

 

3.5.2 Results 

3.5.2.1 Full state space 

We performed the inversion using the full (22-member) state space for all study periods. Figure 
35 and Figure 36 present results for two study periods as examples (Feb 2018 and Jul 2018, 
respectively), with aggregated results from all periods summarised in Table 11. 

What is apparent when using full state space is that the flux adjustments in the inversion 
system affect mostly the values of biogenic fluxes, with significant adjustments only in GPP 
and respiration fluxes of VPRM and very minor readjustments to the anthropogenic fluxes over 
the domain. 
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The inversion predicts slightly elevated net CO2 fluxes in the winters of both 2018 and 2021, 
with slightly higher emissions in the latter in both Germany and in the domain fringes (rest), 
with average fluxes of CO2 of approximately 330 – 340 Tg-CO2/yr in Germany. In Poland the 
model does predict smaller net emission for Feb 2018, which the model attributes exclusively 
to reduced respiration (Figure 35, upper panel; prior = 239 ± 119 Tg-CO2/yr, posterior = 181 ± 
42 Tg-CO2/yr). 

In July of both years, the inversion consistently predicted decreases in net uptake across the 
modelled domain, with significant adjustment in CO2 flux in Germany in both. In 2018, the 
predicted flux was increased from -751 ± 531 Tg-CO2/yr a priori to -216 ± 40 Tg-CO2/yr a 
posteriori (71% decrease of uptake), while in 2021 the a priori monthly average flux of -1148 
± 811 Tg-CO2/yr was adjusted to -593 ± 89 Tg-CO2/yr. Interestingly, in 2021 the optimization 
algorithm yielded simultaneous increases of both respiration flux and uptake, the latter being 
adjusted weaker than the former (not shown). Similar predictions were observed also for other 
spatial regions that year, suggesting an underestimation of the strength of the diurnal cycle by 
VPRM. That same pattern, albeit weaker, was present also in 2018 in Poland and in the 
domain fringes, but not in Germany, where a slight increase of respiration (14%, to 1323 ± 
234 Tg-CO2/yr) was calculated together with a decrease of photosynthetic flux (22%, to -1489 
± 136 Tg-CO2/yr). 

In terms of anthropogenic fluxes, the results point consistently to a small reduction (as 
compared to the prior) of anthropogenic emissions in Germany, by -3.5% for Feb 2018 and 
-4.2% in July 2018, and a stronger one (by -14.8% and -24.5%) in 2021. However, a large 
portion of this reduction seems to be caused by significant adjustment to the power generation 
(GNFR_A), which is usually considered to be well known. One of the hypotheses being tested 
is the vicinity of a single strong point source, which in the analytical inversion setup might 
cause elevated model-data mismatches. However, the tests performed so far remain 
inconclusive. 

Only negligible adjustments were observed in Poland, underlining the overall lack of 
observational sites. The Białystok (BIK) station, located in north-eastern Poland, close to the 
border with Belarus, is located far away from main industrial and population areas, thus the 
probability of sampling anthropogenic signals is low under the most frequent westerly synoptic 
air flow. To further aggravate the matter, the data from BIK for July 2021 were missing 
altogether due to equipment malfunction at the station, forcing the model framework to rely on 
the mountain station of Kasprowy Wierch (KAS) and the German ICOS network to constrain 
the national emissions. As is immediately visible, the inversion framework clearly suggest that 
this network configuration was not sufficient for that purpose. 
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Figure 35: Results for the full state space, February 2018. Blue: a priori. Red: a-posteriori. Top 
panel: absolute flux value for each state vector element. Emissions for BCK have no physical 
meaning and are set to 0. Bottom panel: adjustment of scaling factors. 

 

 

Figure 36: Results for the full state space, July 2021. Blue: a priori. Red: a-posteriori. Top panel: 
absolute flux value for each state vector element. Emissions for BCK have no physical meaning 
and are set to 0. Bottom panel: adjustment of scaling factors. 
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Table 11: Results of full state space inversion. Fluxes in Tg-CO2 yr-1. 

Period Region Prior anthr Post anth Prior bio Post bio 

February 2018      

 PL 432 ± 96 435 ± 97 232 ± 164 174 ± 96 

 DE 985 ± 220 950 ± 199 277 ± 195 341 ± 163 

 Rest 1659 ± 371 1647 ± 363 1356 ± 959 1428 ± 710 

July 2018      

 PL 287 ± 64 289 ± 65 -578 ± 409 -527 ± 172 

 DE 662 ± 148 634 ± 140 -751 ± 531 -216 ± 40 

 Rest 1104 ± 247 1090 ± 242 -4995 ± 3532 -4379 ± 711 

February 2021      

 PL 441 ± 99 451 ± 100 243 ± 171 268 ± 144 

 DE 924 ± 207 787 ± 149 313 ± 221 329 ± 81 

 Rest 1629 ± 364 1469 ± 317 1448 ± 1024 940 ± 221 

July 2021      

 PL 292 ± 65 291 ± 65 -822 ± 581 -707 ± 267 

 DE 591 ± 132 446 ± 89 -1148 ± 811 -593 ± 89 

 rest 1062 ± 237 1057 ± 232 -5378 ± -3803 -4379 ± 711 

 

Overall, the results seem to suggest that the system remains under-constrained in this setup, 
and at least in one case a dipole effect (where fluxes of correlated source categories cause 
compensating, unreasonable flux adjustments) was apparent – namely in the simultaneous 
decrease of emissions by power generation (GNFR_A) and increase in industrial and other 
stationary combustion (GNFR_B and GNFR_C, respectively) in Germany in winter 2018. We 
therefore elected to aggregate the anthropogenic fluxes, running the inversion framework at 
reduced complexity. 

 

3.5.2.2 Reduced state space 

In the reduced state space, which would be representative of a more “classic” inversion 
configuration, we considered only the fluxes from aggregated anthropogenic and aggregated 
biogenic fluxes, effectively reducing the state space from 22 members to 10. Figure 37 shows 
the optimised fluxes calculated for Feb 2021 (c.f. Figure 37), and Table 12 presents the 
complete set of results. 

Qualitative results remain unchanged as compared to the full state space, meaning that in all 
subperiods and all subregions the sign (as well as the order of magnitude) of flux adjustment 
remain unchanged, supporting the conclusion that the system is able to successfully constrain 
the fluxes using the mole fractions in a consistent manner. 

For Poland the ability of the model to constrain anthropogenic emissions remains severely 
limited. Small increases in emissions for all studied periods (1.8%, 4.5%, 7.5%, 5.5% for Feb 
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2018, Jul 2018, Feb 2021 and Jul 2021) are not accompanied by uncertainty reductions at all, 
further emphasizing the lack of data necessary to accurately employ the inversion system. 

For Germany, we do observe anthropogenic flux adjustments and simultaneous uncertainty 
reductions, of, chronologically: -11%, -2% (Feb and Jul 2018) and -35% and -24% (Feb and 
Jul 2021). Based on the results for the full state space we hypothesise that significant 
reductions in 2021 likely have to do with improper transport of the anthropogenic tracers. 

Biogenic fluxes are optimized with much higher uncertainty reduction rates. Winter fluxes are 
estimated to be larger in 2021 for both countries, by 64% for Poland and 20% for Germany. 
Again, a reduction of CO2 release is observed in Poland for winter 2018 (to 168 ± 42 Tg-CO2 
yr-1) with simultaneous increase of the flux in Germany (436 ± 86 Tg-CO2 yr-1) and the rest of 
the analysed domain, an effect not observed in 2021 (PL: 276 ± 72 Tg-CO2 yr-1, DE: 526 ± 62 
Tg-CO2 yr-1). 

The inversion also shows that net ecosystem fluxes were more negative (i.e. taking up more 
carbon dioxide) in 2021 than in 2018, with CO2 net flux diminishing from -672 ± 95 Tg-CO2 yr-

1 to -806 ± 139 Tg-CO2 yr-1 in Poland (20% increase absolute value), and -481 ± 37 Tg-CO2 
yr-1 to -890 ± 48 Tg-CO2 yr-1 in Germany (85% more uptake). Same relative rates for a-priori 
fluxes were larger for Poland (42%) and smaller for Germany (53%). 

 

 

Figure 37: Results for reduced state space, Feb 2021. Blue: a priori. Red: a-posteriori. Top panel: 
absolute flux value for each state vector element. Emissions for BCK have no physical meaning 
and are set to 0. Bottom panel: adjustment of scaling factors. 

 

Table 12: Results of reduced state space inversion. Fluxes in Tg-CO2 yr-1. 

Period Region Prior anthr Post anth Prior bio Post bio 

February 2018      

 PL 432 ± 43 440 ± 40 232 ± 116 168 ± 42 

 DE 985 ± 98 879 ± 54 276 ± 138 436 ± 86 
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 rest 1659 ± 166 1574 ± 135 1356 ± 678 1546 ± 228 

July 2018      

 PL 287 ± 29 300 ± 29 -578 ± 289 -672 ± 95 

 DE 662 ± 66 676 ± 49 -751 ± 376 -481 ± 37 

 rest 1104 ± 110 1173 ± 104 -4995 ± 2498 -5596 ± 397 

February 2021      

 PL 441 ± 44 474 ± 44 242 ± 121 276 ± 72 

 DE 924 ± 92 602 ± 22 312 ± 156 526 ± 62 

 rest 1629 ± 163 1028 ± 70 1448 ± 724 1474 ± 107 

July 2021      

 PL 292 ± 29 308 ± 30 -822 ± 411 -806 ± 139 

 DE 591 ± 59 450 ± 20 -1148 ± 574 -890 ± 48 

 rest 1062 ± 106 1131 ± 88 -5378 ± 2689 - 5131 ± 289 

 

To conclude, it should be noted that the system presented here has been deployed for the 
first time and many of the questions raised in the presented run cannot be easily answered 
without further and deeper analysis. While the reductions of anthropogenic fluxes in Germany 
for 2018 at least seem to be corroborated by simulations from other groups (e.g. Sect. 3.3), 
the numbers cannot be directly compared due to limitations in temporal coverage. This is also 
true in the case of biogenic fluxes. 

3.5.2.3 Summary 

The results clearly demonstrate the importance of increased data availability to constrain 
anthropogenic fluxes over middle-sized countries like Germany and Poland. It is apparent from 
the results that without significant expansion of observational coverage, the increase of the 
accuracy of anthropogenic emissions cannot be obtained using currently available data. 
Without a dense surface observation network like ICOS, and no perspective to develop them 
quickly, satellite observations appear to be the only quick solution available to remedy the 
situation in Poland, but also in other countries in Eastern Europe - and beyond. 

 

3.6 LUMIA for CO2 inversions from in situ observations (LUND) 

3.6.1 Model description 

3.6.1.1 Transport model 

LUMIA inversions rely on the FLEXPART model (version 10.4). FLEXPART is a Lagrangian 
particle dispersion model: it computes the dispersion (backward in time, in our case) of virtual 
air "particles", based on meteorological fields from mesoscale weather models and on internal 
parametrizations for turbulent convection. Our FLEXPART simulations were driven by hourly 
ECMWF ERA5 data, at a resolution of 0.25°. 

In our setup, FLEXPART is used to compute "footprints" of the observations, i.e. vectors 
storing the sensitivity of each observation 𝑦 to surface fluxes 𝑓. The model estimates of the 
CO2 concentrations are then obtained with: 
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𝑦𝑖
𝑚𝑜𝑑

 =  𝑦𝑖
𝑏𝑔 

+ ∑ 𝐾𝑖𝑓𝑐𝑎𝑡

𝑐𝑎𝑡

 

with 𝐾𝑖 = 𝜕𝑦𝑖/𝜕𝑓 the footprint corresponding to the observation 𝑦𝑖. The footprints are 
calculated at a horizontal resolution of 0.25°, for a regional domain ranging from 15°W, 33°N 
to 35°E, 73°N, and for a period of two weeks prior to each observation. The background term 

𝑦𝑖𝑏𝑔 results from the influence of the boundary condition, defined in space by the edges of the 
domain, and in time by the 14 days length of the footprint. 

 

For calculating each footprint, the trajectory of 10000 particles was simulated in FLEXPART, 
released at the observation time and coordinates. For in-situ observations, the particles’ 
release is distributed continuously over the integration time of the observation, i.e. an hour, for 
most sites. The particles are transported until they reach the edge of the domain, for a 
maximum period of 14 days. The sensitivity of the observation to the fluxes (i.e. the footprint) 
is inferred from the aggregated residence time of the particles in surface grid cells (defined as 
the layer below 100 m a.g.l). The final position of the particles (latitude, longitude, time, height 
above ground level) and the local pressure and orography are also stored, and used to 
interpolate the background concentration from the CAMS CO2 concentration product. 

 

3.6.1.2 Prior fluxes 

Following the task protocol, fluxes in five categories were considered: 

• Anthropogenic emissions: TNO product 

• Biogenic CO2 fluxes: VPRM model 

• Ocean: MERCATOR-OCEAN product 

• Biomass burning: GFAS 

• Lateral fluxes: F. Chevallier (LSCE) product (v3) 

 
All fluxes were regridded on a 0.25° hourly resolution to be used in the inversion. When 
increasing the temporal resolution of the data (ocean and lateral fluxes products), the low-
resolution fluxes were distributed homogeneously over the higher resolution time steps (i.e. 
no interpolation). 

3.6.1.3 Assimilated observations 

We assimilate observations from the ICOS ObsPack of ground-based CO2 observations 
(obspack_co2_466_GLOBALVIEWplus_v8.0_2023_03_30, https://doi.org/10.18160/CEC4-
CAGK). All sites that had observations for the year 2018 were selected. When observations 
were available from several sampling heights, the highest one was systematically selected. 
An overview of the data used is provided in Table 13 below. 

The observations to assimilate were further selected in time: 

• For sites with ground altitude below 1000 m a.m.s.l, data between 13:00 and 18:00 local 

time were used. For these sites, the FLEXPART particle release (i.e. the model 
sampling) is done at the height above ground of the sampling height. 

• For high-altitude sites, data between 00:00 and 5:00 were used. For these sites, the 
FLEXPART particle release is done at the altitude above sea level of the observations. 

 
For each observation site, an estimate of the model representation error is calculated, based 
on the quality of the fit of the model to the short-term variability of the data. The procedure is 
the following: 

1. An initial estimate of the concentrations is calculated based on the prior fluxes 
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2. The observations and the a priori concentrations are detrended by subtraction of their 
weekly moving average 

3. The standard deviation of these detrended model-data mismatches is used as estimate for 
the model error. 

 

The rationale behind this approach is that short-term variability of the modelled concentrations 
is largely a result of the modelled atmospheric dynamic, whereas long-term variability can 
result from errors in the prior fluxes, which the inversion should be able to resolve. 

The resulting model error estimates are reported in Table 13 below, for each site. The 
observation uncertainty is then combined with the measurement error set to the value reported 
by the data providers (with a minimum of 0.3 ppm). 

 

Table 13: Observation sites used in the inversions. Column 6 shows the site-specific model 
representation error used in the inversions. 

 Name 
latitude 

(˚N) longitude (˚E) 

surface 

altitude (m 

a.m.s.l) 

sampling_h

eight (m 

a.g.l) 
model error 

(ppm) dataset_name 

BIK Bialystok 53.23 23.01 183 300 04.01 co2_bik_tower-insitu_45_allvalid-300magl 

BIS Biscarrosse 44.38 -1.23 73 47 3.77 co2_bis_surface-insitu_11_allvalid 

BRM Beromunster 47.19 8.18 797 212 5.74 co2_brm_tower-insitu_49_allvalid-212magl 

BSD Bilsdale 54.36 -1.15 380 248 3.94 co2_bsd_tower-insitu_160_allvalid-248magl 

CBW Cabauw 51.97 4.93 0 207 5.97 co2_cbw_tower-insitu_445_allvalid-207magl 

CMN Monte Cimone 44.19 10.7 2165 8 03.04 co2_cmn_surface-insitu_443_allvalid 

CRP Carnsore Point 52.18 -6.37 9 14 3.24 co2_crp_surface-insitu_137_allvalid 

ERS Ersa 42.97 9.38 533 40 3.52 co2_ers_surface-insitu_11_allvalid 

FKL Finokalia 35.34 25.67 250 15 2.58 co2_fkl_surface-insitu_11_allvalid 

GAT Gartow 53.07 11.44 70 341 4.15 co2_gat_tower-insitu_147_allvalid-341magl 

HEI Heidelberg 49.42 8.68 113 30 9.23 co2_hei_surface-insitu_22_allvalid 

HPB Hohenpeissenberg 47.8 11.02 934 131 5.1 co2_hpb_tower-insitu_147_allvalid-131magl 

HTM Hyltemossa 56.1 13.42 115 150 3.27 co2_htm_tower-insitu_424_allvalid-150magl 

HUN 

Hegyhátsál 

háttérszennyettség-

mérő állomás 46.96 16.65 248 115 5.34 co2_hun_tower-insitu_35_allvalid-115magl 

IPR Ispra 45.81 8.64 210 100 9.1 co2_ipr_tower-insitu_103_allvalid-100magl 

JFJ Jungfraujoch 46.55 7.99 3580 5 3.13 co2_jfj_surface-insitu_49_allvalid 

KAS Kasprowy Wierch 49.23 19.98 1987 7 05.05 co2_kas_surface-insitu_53_allvalid 

KIT Karlsruhe 49.09 8.42 110 200 8.67 co2_kit_tower-insitu_39_allvalid-200magl 

KRE Křešín u Pacova 49.57 15.08 534 250 4.14 co2_kre_tower-insitu_441_allvalid-250magl 

LHW Laegern-Hochwacht 47.48 8.4 840 32 5.59 co2_lhw_surface-insitu_5_allvalid 
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LIN Lindenberg 52.17 14.12 73 98 09.01 co2_lin_tower-insitu_147_allvalid-98magl 

LMP Lampedusa 35.52 12.63 45 8 2.27 co2_lmp_surface-insitu_28_allvalid 

LUT Lutjewad 53.4 6.35 1 60 5.62 co2_lut_surface-insitu_467_allvalid 

MHD Mace Head 53.33 -9.9 5 24 2.67 co2_mhd_surface-insitu_11_allvalid 

MLH Malin Head 55.36 -7.33 22 47 3 co2_mlh_surface-insitu_468_allvalid 

NOR Norunda 60.09 17.48 46 100 3.38 co2_nor_tower-insitu_424_allvalid-100magl 

OHP 
Observatoire de 

Haute Provence 43.93 5.71 650 100 3.32 co2_ohp_tower-insitu_468_allvalid-100magl 

OPE 

Observatoire 

pérenne de 

l'environnement 48.56 5.5 390 120 5.53 co2_ope_tower-insitu_469_allvalid-120magl 

PAL Pallas 67.97 24.12 565 12 2.43 co2_pal_surface-insitu_30_allvalid 

PDM Pic du Midi 42.94 0.14 2877 28 2.51 co2_pdm_surface-insitu_11_allvalid 

PRS Plateau Rosa 45.93 7.7 3480 10 2.6 co2_prs_surface-insitu_21_allvalid 

PUI Puijo 62.91 27.65 232 84 4.35 co2_pui_tower-insitu_471_allvalid-84magl 

PUY Puy de Dôme 45.77 2.97 1465 10 3.83 co2_puy_surface-insitu_11_allvalid 

RGL Ridge Hill 52 -2.54 199 90 3.7 co2_rgl_tower-insitu_160_allvalid-90magl 

SAC Saclay 48.72 2.14 160 100 7.15 co2_sac_tower-insitu_11_allvalid-100magl 

SMR Hyytiälä 61.85 24.29 181 125 03.09 co2_smr_tower-insitu_421_allvalid-125magl 

SVB Svartberget 64.26 19.77 269 150 2.89 co2_svb_tower-insitu_440_allvalid-150magl 

TAC Tacolneston 52.52 1.14 56 185 4.87 co2_tac_tower-insitu_160_allvalid-185magl 

TOH Torfhaus 51.81 10.54 801 147 5.51 co2_toh_tower-insitu_147_allvalid-147magl 

TRN Trainou 47.96 2.11 131 180 4.95 co2_trn_tower-insitu_11_allvalid-180magl 

UTO Utö - Baltic sea 59.78 21.37 8 57 3.47 co2_uto_surface-insitu_30_allvalid 

WAO Weybourne 52.95 1.12 31 10 5.76 co2_wao_surface-insitu_13_allvalid 

ZSF Zugspitze 47.42 10.98 2666 3 3.37 co2_zsf_surface-insitu_25_allvalid 

 

 

3.6.1.4 State vector 

The inversions solve for daily offsets to the prior emissions, at the native resolution of the 
fluxes (0.25°): 

𝑓𝑎𝑝𝑜𝑠
𝑐𝑎𝑡 = 𝑓𝑎𝑝𝑟𝑖

𝑐𝑎𝑡 + 𝑇𝑋𝑎𝑝𝑜𝑠 

with X the state vector, reshaped as a (𝑛𝑜𝑝𝑡
𝑡 , 𝑛𝑜𝑝𝑡

𝑝 ) matrix, and T is a (𝑛𝑚𝑜𝑑
𝑡 , 𝑛𝑜𝑝𝑡

𝑡 ) matrix, where 

𝑇(𝑡𝑚𝑜𝑑 , 𝑡𝑜𝑝𝑡 ) is the fraction of the optimised interval 𝑡𝑜𝑝𝑡  that overlaps with the model time step 

𝑡𝑚𝑜𝑑 . The size of the state vector is therefore 𝑛𝑜𝑝𝑡
𝑡 × 𝑛𝑐𝑎𝑡

𝑝 × 𝑛𝑐𝑎𝑡, with: 

• 𝑛𝑜𝑝𝑡
𝑡  the number of time steps in the optimization (i.e. 365 for a one-year inversion), 

• 𝑛𝑐𝑎𝑡
𝑝

 the number of grid cells for the category cat (grid cells where the emissions are not 

defined, e.g. biosphere fluxes in the ocean, are not included in the state vector). 
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• 𝑛𝑐𝑎𝑡 the number of optimised categories (1 or 2, depending on whether anthropogenic 

emissions are prescribed or optimised). 

 
The prior error-covariance matrix is constructed with: 

• exponential decay of the spatial correlations, with correlation length of 500 km for the 

biosphere fluxes, and 200 km for the anthropogenic fluxes (in the main experiments). 

• exponential decay of the temporal correlations, with correlation lengths of 30 days for the 

biosphere fluxes, and either 7 days for the anthropogenic fluxes. 

• variances are set proportional to the sum of the absolute value of the prior fluxes in each 
optimization interval. In other words, since the fluxes are transported hourly, and 

optimised daily, the variances are constructed from the sum of the absolute value of the 
hourly fluxes (for each grid cell and category). 

• A category-specific scaling factor is applied to the variances, to ensure a total annual 

uncertainty of 0.5 PgC for biosphere fluxes, and 0.07 PgC (i.e. ~5% of the annual total) 
for anthropogenic emissions, at the continental scale. These values are in line with the 

reported differences in bottom-up inventories for Europe. 
 

3.6.1.5 Period of study 

The inversion covers the entire year of 2018, plus a spin-up period of one year at the 
beginning, and a spin-down period of one month at the end (i.e. it ranges from 1st December 
2018 to 1st February 2019, but only data for 2018 are interpreted and included in the 
deliverable). 

 

3.6.2 Results 

Two main inversions were performed (plus additional sensitivity tests): 

• In the bio inversion, only the biogenic emissions (VPRM prior) are optimised. This 

corresponds to our pre-existing LUMIA setup. 

• In the biofos inversion, both the anthropogenic and biogenic emissions are adjusted by 

the inversion 

 
3.6.2.1 Domain-scale results 

Aggregated over the entire European domain, the bio inversion points to a reduction of the 
carbon uptake by the terrestrial ecosystems, from a net value of -0.83 PgC/year in the prior 
VPRM fluxes to a posterior flux of -0.57 PgC/year. The largest part of that flux correction 
occurs during the growth season, from April to the end of August. During the winter months, 
the inversion points to a reduction of the (positive) C flux, small in absolute terms (-2 TgC/day) 
but important in relative terms (~50% of the prior flux). This result is globally in line with 
previous results obtained with the LUMIA system (e.g. McGrath et al. 2023). 

 

The biofos inversion, which also adjusts the anthropogenic emissions, leads to a relatively 
similar correction to the prior biosphere fluxes, but it sticks more to the prior during the winter. 
Over the year, this integrates to a near neutral net flux (-0.05 PgC/year). This is compensated 
by anthropogenic emissions, with a very strong (and clearly unrealistic) reduction of the flux 
estimate, from +1.39 PgC/year in the prior, to 0.86 PgC/year in the posterior. 
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Figure 38: Prior (blue) and posterior fluxes, at the daily and annual scale, aggregated over the 
entire European domain. 

 

 

The third row in Figure 38 shows the total of the biosphere and anthropogenic emissions: they 
are almost identical in bio and biofos: the two inversions differ essentially in how they 
distribute the flux correction across the two flux categories. Since anthropogenic and 
biosphere emissions are largely co-located (or at least, the observation network is not fine 
enough to be sensitive to differences in location), the biofos inversion relies mainly on the 
(prescribed) prior flux uncertainties to distribute the flux adjustments between the biosphere 
and anthropogenic categories. The prior uncertainties are shown in Figure 39. Although, 
overall, the uncertainty on the biosphere category is the largest (0.5 PgC/year vs. 0.07 
PgC/year for the anthropogenic category), the uncertainty on anthropogenic emissions 
actually dominates in a band ranging from Southern UK to Western Poland. This also happens 
to be where the ICOS network is the densest, and explains why the biofos inversion seems 
to adjust in priority the anthropogenic emissions. 
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Figure 39: Prior uncertainties of the biosphere (left) and anthropogenic (middle) flux 
categories. The plot on the right shows the difference between the two, highlighting the areas 

dominated by uncertainties in anthropogenic emissions (brown) and those where biogenic 
emission uncertainty dominates (green). 

3.6.2.2 Spatial distribution of the flux adjustments 

Gridded maps of the prior fluxes and of the flux adjustments obtained in bio and biofos are 
shown in Figure 40. Essentially, it confirms the analysis of fluxes at the domain-scale: allowing 
the inversion to separately adjust the biogenic and anthropogenic emissions does not lead to 
significant differences in the map of total flux adjustments (lower-middle vs. lower-right plots), 
but leads to a reduction of the adjustment in the biosphere emission category. However, since 
the optimised emissions of the biofos emissions appear quite unrealistic, this category-
specific result should not be interpreted further. The bio inversion seems to point to an 
overestimation of the C uptake in Southern Europe by the VPRM prior, and to an 
underestimation in North-East Europe. 
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Figure 40: Prior fluxes (left) and optimized flux adjustments in the bio (middle) and biofos 
(right) inversions, for the biosphere (top) and anthropogenic (bottom) fluxes. The lower row 

shows the sum of anthropogenic and natural fluxes / flux adjustments. 

3.6.2.3 Country-scale results 

Given the poor performance of the biofos inversion, we did not interpret country-scale results 
much further. They are however included as part of the deliverable data, and summarised in 
Figure 41, for the countries with the largest prior fluxes. The daily country totals are also 
provided as one of the deliverable datasets (along with the gridded fluxes). The aggregation 
at this scale confirms that the total flux adjustment is more robust than the category-specific 
flux corrections. 
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Figure 41: Prior and posterior fluxes for the biosphere (top) and anthropogenic (middle) fluxes, 
and the sum of the two (bottom). 

3.6.2.4 Fit to the observations 

The fit to observations is a classical diagnostic of atmospheric inversions. It fulfils essentially 
three purposes: 

- verifying that the basic model settings are correct. In our case, we focus in particular 
on the quality of the background concentration interpolation, as it is a new 
development; 

- verifying that the data selection is adequate, given the transport model performances; 
- verifying that the inversions lead to an improvement in the fit to observations, and that 

these improvements are in line with the expectations (e.g., the biofos inversion has 
more degrees of freedom than the bio one, so it should lead to slightly better posterior 
fit to the data). 

In order to compare the performance of the inversions, we computed, for each site the prior 

and posterior 𝜒2 fit to the assimilated data (which is favoured to e.g. the RMSE, as it accounts 
for observation uncertainties), as well as the mean biases (Figure 42). 

The prior 𝜒2 are between 1 and 2. Both inversions are able to reduce the 𝜒2 at all sites, but 
perform less well at Ispra (IPR) and also, to some extent, at high-altitude sites (JFJ, KAS, 
PRS, CMN, PDM). Ispra is known to be a complex site to represent, and high-altitude sites 
are occasionally very sensitive to background concentrations, which are prescribed, and the 
model fit there is therefore more difficult to improve. The biofos inversion consistently leads 

to lower 𝜒2 values than the bio inversion, which is expected as it has additional degrees of 
freedom to fit the data. 
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The fact that the prior 𝜒2 are already so close to 1 could suggest the prior fit to the data is 
already close to optimal: either the observation uncertainties are in fact underestimated (which 

would raise the prior  𝜒2, and lead to posterior  𝜒2 closer to 1), or the inversions are, in fact, 
overfitting the data. Both the prior and observation uncertainties were set to reasonable 
values, therefore this overfitting could be solved by either reducing strongly the number of 
degrees of freedom of the inversions (e.g., by imposing much stronger covariances between 
the grid cells), or by increasing drastically not just the number of observations, but the 
observation coverage (e.g., by using satellite data). 

The posterior mean biases are below 1 ppm at each station, except for Heidelberg (HEI), Ispra 
(IPR) and Lutjewad (LUT). In the case of HEI and LUT, the relatively poor posterior fit is due 
to the fact that these two sites have high observation uncertainties (Table 13), therefore they 
have a reduced weight in the inversion. A sensitivity test has been performed excluding the 

sites with the lower 𝜒2 reduction, but did not significantly improve the separation between 
anthropogenic and biogenic fluxes. 

 

Figure 42: Prior and posterior 𝝌𝟐 fit to the data (top) and biases (bottom) at each site 

 

3.6.2.5 Background concentrations 

In these inversions, the background concentrations were interpolated from the CAMS CO2 
inversions (FT18r1), using FLEXPART to transport the background concentration from the 
transport model domain edges (defined in space, for all the observations, and in time, for each 
observation) to the observation coordinates. Previous LUMIA inversions had relied on in-
house global TM5-4DVAR CO2 inversions, assimilating in-situ data distributed through the 
NOAA GlobalViewPlus obspacks. Significant differences exist between the two datasets of 
background concentrations, with a mean bias of 0.48 ppm, and a RMSE of 2.21 ppm. This 
difference is likely to have a significant impact on the results, however, it is impossible, at this 
stage, to assess the relative qualities of each background concentration dataset. It is 
technically possible to let the inversions adjust the background concentrations, however, we 
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choose not to do this at this stage, as it would make the results even more difficult to interpret. 
The impact of the boundary condition (and associated uncertainties) can instead be assessed 
through sensitivity experiments. 

 

Figure 43: example of background concentrations, from CAMS (red, used in the inversions) 
and from TM5-4DVAR (yellow, not used) at Hegyatsal, Hungary. 

3.6.2.6 Discussion 

Many sensitivity tests were performed in order to try improving the results. In particular, we 
tested: 

- increasing and reducing the observation uncertainties 
- performing inversions with reduced observation site selections (excluding the sites that 

were the hardest to fit) or, on the contrary, with a larger quantity of observations 
(extended hour range for the assimilation periods) 

- adjusting the covariance lengths (several configurations were tested, including much 
shorter spatial covariance lengths (down to 100 km), shorter or longer temporal 
covariance lengths (from 7 days to 30 days), for both flux categories) 

- optimising separately GPP and respiration (in which case, the inversion had three 
categories: GPP, respiration and anthropogenic) 

- reducing the uncertainties on the anthropogenic emissions prior to a near negligible 
value (0.00007 PgC, i.e. a factor 10 000 lower than in biofos) 

Out of these, only the last experiment was able to avoid an unrealistic reduction of the 
anthropogenic emissions. The aim of this test was purely to verify that the results in biofos 
were not due to a malfunctioning of the inversion system, such a low uncertainty value for the 
anthropogenic emissions is not in line with the real uncertainties. It proves that more realistic 
country-scale results are achievable through a better specification of uncertainties. However, 
this displaces the problem from estimating the fluxes to estimating the prior uncertainties: the 
values used for both the prior biogenic and anthropogenic uncertainties are in line with those 
used in literature and in recent intercomparison experiments (Scholze et al., 2019, Monteil et 
al., 2020; Thompson et al., 2020; McGrath et al., 2023), and those uncertainties would need 
to be drastically modified in order to achieve a realistic category distribution of the posterior 
flux adjustments. In contrast, the total flux adjustment (anthropogenic + biogenic in our biofos 
inversion) is much less dependent on the prior uncertainty settings, which gives us a 
reasonable confidence that it can be interpreted scientifically. 

The other pathway towards discriminating anthropogenic and biogenic fluxes would be the 
use of additional informational constraints. Those could come from satellite observations 
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(which LUMIA is currently unable to assimilate), or from the assimilation of co-emitted tracers, 
e.g. radiocarbon (14CO2), which was recently implemented in LUMIA 
(https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2215/). 

Finally, allowing the inversion to optimise the background concentrations would be a logical 
step, given the differences between the two background concentration datasets at our 
disposal, and it would likely reduce the tendency of the inversion to adjust the anthropogenic 
and biogenic emissions, but there is a risk that the amplitude of the adjustment in optimised 
fluxes would become highly dependent on the uncertainty attributed to the background 
concentrations. 

3.7 TRACE for OSSEs with CO2 inversions from pseudo in situ observations 
(LUND) 

3.7.1 Model description 

3.7.1.1 Transport model 

 

Figure 44: (a) Model domain and ecoregions for the inversion experiments with the TRACE 
system. (b) Location of ground-based CO2 observations. Triangles denote tall towers (≥100 m 
height above the ground) and squares denote short towers. A combined triangle and square 
denotes a tower with multiple intake heights, and the tower location is then indicated by the 

lower square. The colours show the fractions of observations assimilated, which were 
determined based on when the observations were determined to be representative of well-

mixed conditions. 

The TRACE Regional Atmosphere–Carbon Ensemble (TRACE) system uses the online WRF 
model to dynamically downscale meteorological conditions and simulate the transport of CO2 
(and potentially other species). A description of WRF is given in Section 3.11.4.1. TRACE is 
currently configured to use WRF version 3.6.1. The modeling of atmospheric CO2 transport is 
carried out by the WRF-Chem module, which has been modified to enable large ensembles 
of tracer simulations within a single WRF run, making it computationally efficient to perform 
ensemble runs with, e.g., perturbed flux fields. 

Here, WRF was set up to run for a single domain covering a large portion of North America 
(Figure 44a) at a horizontal resolution of 27 km and 60 vertical levels spanning up to 50 hPa, 
with denser vertical levels closer to the surface and increasing distances between levels higher 
up in the atmosphere. The time step was set to 60 seconds. Physical parameterizations 
include a positive definite sixth-order diffusion scheme, the Noah land-surface model, the 
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Mellor-Yamada Nakanishi and Niino Level 2.5 boundary layer scheme, and the Kain-Fritsch 
convective scheme. 

For the experiments reported here, we used meteorological initial and boundary conditions 
from the ERA-Interim reanalysis (81 km resolution and 60 vertical levels), and CO2 mole 
fractions from the CarbonTracker CT2019B dataset (3° × 2° longitude-latitude and 25 vertical 
levels). TRACE has also been updated to run using the ERA5 reanalysis and CO2 from CAMS, 
however, these inversions have not been finalized yet. We first carried out observing system 
simulation experiments (OSSEs) to rigorously test the system, which are also reported in Chen 
et al. (2023). 

 

3.7.1.2 Prior fluxes and assimilated observations 

The prior fluxes were obtained from the downscaled 3-hourly prior fluxes in CT2019B (1° × 1° 
horizontal resolution). The prior biogenic fluxes come from a simulation with the Carnegie-
Ames Stanford Approach (CASA) model called CASA GFED 4.1s, and the oceanic fluxes from 
the Takahashi et al. (2009) climatology. The results here focus on these two flux components, 
as they generally have the largest influence on the CO2 mole fraction variations in the domain. 
A test experiment was performed using prior anthropogenic emissions from the Miller fossil 
fuel emission inventory, but the ground-based CO2 observation network used in the OSSEs 
did not show much sensitivity to the anthropogenic emissions, thus these results are not 
included. 

In OSSEs, a reference run is taken as the “truth” and synthetic observations can then be 
derived from this reference run. A big advantage of OSSEs is that the truth is known, making 
it possible to evaluate the inversion results directly against the true fluxes. Here, the true fluxes 
were taken from different datasets than the prior fluxes, namely the CASA GFED_CMS 
simulation for biogenic fluxes, and Ocean Inversion Fluxes for oceanic fluxes, both provided 
by CT2019B. All fluxes were interpolated to the WRF grid using a first-order conservative 
regridding scheme. 

The observations were derived based on the location of ground-based in situ tower 
observations within the domain, mainly from NOAA and Environment Canada, see Figure 44b. 
Random Gaussian noise was added to the synthetic observations with a mean of 0 and 
standard deviation of 1 ppm to simulate observation errors. 

 

3.7.1.3 State vector 

The state vector in TRACE consists of both atmospheric CO2 mole fractions and, through 

state augmentation, parameters controlling CO2 fluxes at every model grid point (and all 

vertical levels for CO2 mole fractions), similar to the ICON inversion system (Section 3.4). 

Different flux parameters are applied for the different flux components (anthropogenic 

emissions, biogenic fluxes, and oceanic fluxes). TRACE can also include meteorological 

fields in the state vector, which makes it possible to optimize meteorological conditions and 

atmospheric transport by assimilating conventional weather observations, but this 

functionality was not tested here. The main purposes of coupling the atmospheric and 

carbon flux states are to (1) make it computationally efficient to assimilate a large number of 

observations, including column-integrated satellite observations; and (2) add the possibility 

to account for correlated atmospheric transport errors in the simulated CO2 mole fractions 

(see Chen et al., 2019). 

CO2 mole fractions and flux parameters are jointly optimized in the inversion through 

ensemble-based simultaneous state and parameter estimation (ESSPE). The ESSPE 
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approach in TRACE is based on a square-root formulation of the ensemble Kalman Filter 

(EnKF). In the original Kalman filter, the state vector is updated according to: 

 

where xa and xb are the posterior and prior state vectors, respectively, yo is a vector of 

observations, H is the linearized observation operator, and K is the Kalman gain: 

 

where Pb and R are the error covariance matrices for the prior and observations, 

respectively. The posterior error covariance matrix Pa is then given by: 

 

where I is the identity matrix. After the assimilation step, the error covariance matrix is 

propagated forward in time using the dynamic model. 

The Kalman filter is computationally prohibitive to apply for high-dimensional systems due to 

the need to propagate the full covariance matrix. The EnKF solves this by estimating the 

error covariance matrix with an ensemble representation: 

 

where N is the number of ensemble members and X’ is a matrix consisting of ensemble 

perturbations (deviations from the ensemble mean) in its columns. The experiments here 

used N=40 members with perturbed flux parameters. 

Instead of computing the full Kalman gain matrix, which involves inverting a p x p matrix 

(where p is the number of observations), the square-root filter solves the update equation by 

assimilating observations sequentially. This assumes that there are no error correlations 

between observations, i.e., that R is diagonal. In this case, the matrix inversion becomes a 

scalar division. The ensemble mean is updated according to the original update equation, 

while the ensemble perturbations x’ (with superscript a for posterior and b for prior) are also 

updated in each iteration to account for the reduced uncertainty from assimilating previous 

observations: 

 

where K̃ is the reduced Kalman gain matrix: 
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Figure 45: (a) Variations in correlations between flux parameter errors with distance and 
between ecoregions for different correlation functions. The green and brown shading at the 
bottom indicate two different ecoregions. (b–d) Examples of spatial flux error correlations 

between the grid point indicated by the white cross and all other grid points for the (b) 
ECOREGION, (c) DISTANCE, and (d) HYBRID correlation functions. 

In the forecast step, the atmospheric state, including CO2 mole fractions, are propagated 

forward using the WRF model. The flux parameters are assumed to be constant scaling 

factors for the prior fluxes (40% uncertainty for biogenic fluxes and 80% uncertainty for 

oceanic fluxes). The dynamic model for the flux parameters is a persistence model. Because 

we do not know the true prior error covariances for the flux parameters, three experiments 

were carried out with different spatial correlations in flux parameter errors: (1) Flux 

parameter errors that are 100% correlated within ecoregions and no correlation between 

ecoregions, denoted as ECOREGION. This formulation is similar to parameters that vary 

with Plant Functional Types in vegetation models. (2) An error correlation that decays with 

distance according to a Gaussian function with a length scale of L=500 km, denoted 

DISTANCE. This is similar to what is used in many modern inversion systems. (3) A hybrid 

approach that takes into account both distance and ecoregions, denoted HYBRID. Figure 45 

shows the error correlation functions and examples of how they can vary spatially. 

A horizontal localization scheme was applied to the in situ CO2 observations following a 

Gaspari and Cohn fifth-order polynomial with a radius of influence of 5,400 km. The posterior 

ensemble spread was relaxed to the prior spread by 20% to avoid filter divergence. 

Additionally, the posterior ensemble spread in the flux parameters was relaxed to 10% of the 

prescribed initial parameter perturbations to ensure there is a spread in the flux parameters, 

as there is no inherent error growth in the persistence model. Further details about the 

TRACE data assimilation system can be found in Chen et al. (2023). 
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3.7.1.4 Period of study 

The TRACE experiments here focus on North America in July 2016, which is different from 
the other inversion systems in this report. Given that these experiments are OSSEs, the results 
should not be compared with real-data experiments, as the results depend on our assumed 
truth, and do not necessarily reflect reality. The purpose of these experiments is to evaluate if 
the new ESSPE approach is appropriate for CO2 inversions and if there are any issues due 
to, e.g., mass balance and short assimilation windows. 

 

3.7.2 Results 

 

Figure 46: Domain-integrated daily net CO2 fluxes for the true, prior fluxes, and posterior fluxes. 
The different inversion experiments used different prior flux parameter error correlations. The 
white background highlights the study period. 

 

Figure 46 shows a time series of the net CO2 fluxes in the domain for the study period. The 
inversion experiments were spun up for 2 weeks without assimilating observations to establish 
the links between perturbed CO2 flux parameters and atmospheric CO2 mole fractions, and 
then 2 additional weeks with assimilation. The first 4 weeks were then discarded as spin-up. 
A 1-week assimilation window was used, which meant that the experiments ended on 5 August 
2016. The days in August were similarly discarded to focus on the month of July. 

The posterior fluxes in all inversion experiments show a closer fit to the true fluxes compared 
with the prior fluxes, which overestimated the carbon sink over North America. There are some 
days when the posterior fluxes still had a too strong sink, for example in the beginning of July, 
but overall the inversions were able to constrain the time evolution of the domain-wide net 
fluxes well. 
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Figure 47: Domain-integrated root-mean-square error in column-integrated dry air mole 
fraction of CO2 (XCO2) in the simulations run using the prior and posterior CO2 fluxes. 

 

A common worry about jointly optimizing CO2 concentration and fluxes, also known as dual-
state inversions, is that the posterior CO2 fluxes and/or the concentrations turn out to be 
unrealistic. In our OSSEs we can directly evaluate both the posterior fluxes and concentrations 
over the whole domain against the truth. Figure 47 shows the time evolution of the root-mean-
square error (RMSE) in column-integrated CO2 (XCO2) over the whole domain (excluding a 
margin of 20 grid points around the edge) in the simulations using prior and posterior fluxes. 
By assimilating the ground-based CO2 observations and optimizing the CO2 concentration and 
fluxes, the RMSE in domain-integrated XCO2 decreased from around 0.47 ppm to 0.24–0.29 
ppm, with the largest RMSE decreases in the HYBRID experiment and smallest in 
ECOREGION. Thus, the joint optimization was able to reduce the RMSE in simulated CO2 
concentrations in the regional domain by about 50%. 

To evaluate the spatial patterns of the fluxes, Figure 48 shows the monthly mean net CO2 
fluxes over the whole domain for the prior, true, and posterior fluxes. Compared with the true 
fluxes, the prior underestimates the carbon sink in the northwestern part of the domain and 
around the Corn Belt in the United States, and simulates a too strong carbon sink in most 
other parts of the domain, especially in the southeastern United States. The posterior fluxes 
from the different experiments all show realistic patterns and are able to overall reduce the 
mismatch to the true fluxes. The ECOREGION experiment shows some large deviations from 
the truth—some even larger than the mismatch between the prior and truth—especially in the 
southern part of the Corn Belt, which can be attributed to incorrect upscaling of the flux 
corrections through the ecoregion-shaped flux parameter error correlations. The differences 
between the truth and posterior fluxes from the DISTANCE and HYBRID inversions tend to 
be smaller in both magnitude and spatial scale. All inversions were able to increase the carbon 
sink around the Corn Belt where the observation coverage was relatively dense. 
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Figure 48: Spatial distribution of monthly averaged net CO2 fluxes for the study period. (a) 
Prior fluxes, (b) true fluxes, and (c) differences between the prior and true fluxes. (d–f) 

Posterior fluxes, (g–i) differences between the posterior and true fluxes, and (j–l) estimated 
uncertainties (1σ) for the posterior fluxes for the ECOREGION (first column), DISTANCE 

(second column), and HYBRID (third column) experiments. 

 

 

The ensemble-based TRACE system produces not only posterior CO2 fluxes after assimilating 
atmospheric observations, but also uncertainty estimates for these fluxes. The last row of 
Figure 48 shows the estimated posterior uncertainties (one ensemble standard deviation) at 
the grid point scale, which can be compared with the differences between posterior and true 
fluxes in the previous row. The ECOREGION inversion appears to generally underestimate 
the uncertainties, likely due to the strong constraint provided by the ecoregion-specific flux 
parameters (100% correlated flux parameter errors within ecoregions), which in this case does 
not reflect the true flux parameter errors. In contrast, the DISTANCE and HYBRID experiments 
produced posterior uncertainties that are generally consistent with the true errors, except for 
the southern part of the United States, where the uncertainties were slightly underestimated.  
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Figure 49: Domain-integrated net CO2 flux and regional net CO2 fluxes for the subregions 
shown in the inset: northwestern (NW), northern (N), northeastern (NE), southwestern (SW), 

southern (S), and southeastern (SE) part of the domain. The true values for the fluxes are 
shown as black vertical lines. The error bars represent the flux uncertainty derived from the 
ensemble spread (2σ). The shading in the inset shows the true fluxes, and the squares and 

triangles display the location of the ground-based observations. 

 

Figure 49 summarizes the results in terms of regional carbon budgets for the month of July 
2016. The domain was divided into six roughly equally-sized subregions, and the net CO2 
fluxes were calculated for each subregion for the true, prior, and posterior fluxes. In terms of 
the domain-wide CO2 emissions and uptake, all inversions drastically improved the budget by 
reducing the overestimated carbon sink in the prior fluxes, consistent with what Figure 46 
showed. Moreover, uncertainties on the posterior fluxes are about 4 times smaller than the 
prior flux uncertainties, reflecting an increased confidence in the flux estimates after 
assimilating the CO2 concentration observations, consistent with the true errors. 

When focusing on the carbon budgets for the subregions, the picture becomes a bit less clear. 
Here, the prior fluxes are close to the truth in some subregions, especially in the northwestern 
(NW) and northern (N) part of the domain, while the inversions underestimate the sinks. 
Further investigations show that the degradation in the posterior fluxes in the NW region occur 
because the inversions were able to partially reduce the overestimated CO2 sink in northern 
California and southern Oregon (compare Figure 48c and Figure 48g-i), while the 
underestimated carbon sink in the northwesternmost part of the domain where observations 
are sparse remained in the posterior fluxes. Thus, although the inversions improved the fluxes 
at the grid point scale, these improvements led to an overall degradation of the net fluxes 
integrated over the NW subregion. One should therefore be careful when evaluating regional 
carbon budgets, as the results can be sensitive to how aggregation is done (i.e., how the 
regions are defined). With that said, when considering all regional carbon budgets, for example 
by summing the absolute differences between the prior/posterior and true fluxes, the 
inversions all led to smaller total absolute errors in regional budgets: 103.3 Tg C month-1 for 
ECOREGION, 92.6 Tg C month-1 for DISTANCE, and 77.5 Tg C month-1 for HYBRID, 
compared with 157.7 Tg C month-1 for the prior fluxes. The best-performing HYBRID inversion 
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thus improved upon the prior fluxes by more than 50% in terms of regional budgets for the 
subregions shown in Figure 49. At the continental scale, all inversions show robust error 
reductions compared with the prior, with 80.6%, 88.5% and 84.4% relative error reductions for 
the ECOREGION, DISTANCE, and HYBRID experiments, respectively. 

Consistent with previous results, the DISTANCE and HYBRID inversions produced 
uncertainty estimates on region carbon budgets that generally match the true errors, except 
for in the southern (S) and southeastern (SE) subregions, where the prior uncertainties also 
underestimated the true errors. The ECOREGION inversion generally produced too small 
uncertainties on the posterior fluxes. Inversions using such formulations for the flux 
(parameter) error correlations should therefore consider additional inflation methods to avoid 
underestimating the flux errors. 

To conclude, it is important to remember that the OSSEs here are idealistic and do not include 
all error sources. The results reported here should therefore be considered optimistic and do 
not reflect the expected performance from real-data inversions. Nevertheless, the OSSEs 
show that the dual-state CO2 flux and concentration optimization in TRACE using the ESSPE 
approach is a promising framework to further develop novel CO2 inversion algorithms.The 
OSSEs can gradually be made more realistic by including additional error sources, such as 
atmospheric transport errors. One strength of the TRACE system is that atmospheric transport 
errors can be simulated using the online weather model by perturbing meteorological 
conditions and then assimilating weather observations (see Chen et al. 2019). Additional 
errors, for example due to uncertain CO2 lateral boundary conditions, can be included in a 
straightforward manner in the ensemble system by introducing appropriate perturbations to 
the ensemble members. Next steps include extending the TRACE system to satellite 
observations and increasing the model resolution, which hopefully increases the sensitivity to 
fossil fuel emissions. The system is already capable of assimilating XCO2 observations (not 
shown), and further experiments will focus on making the XCO2 observations more realistic, 
for example to mimic future measurements from CO2M. 

3.8 LOTOS-EUROS for CH4 inversions from in situ observations (TNO) 

The LOTOS-EUROS inversion system is based on a 4D-Var technique and aims at estimating 
gridded emission fields at European scale. The system inherits the framework used for the 
CAMS global CH4 emission inversion that is used in combination with the global TM5 model. 
As the system has been developed mainly within this project, the current application is limited 
to CH4 only, although tests have been conducted including CO2 too. 

3.8.1 Model description 

3.8.1.1 Transport model 

The LOTOS-EUROS model (Manders et al., 2017) is a regional chemistry transport model 
(CTM) driven by offline meteorological data. The main application is in full chemistry 
simulations including trace gases and aerosols related to air quality and deposition, but the 
model could also be configured to simulate concentrations of greenhouse gases. 

In this study, the model domain is defined following the “Protocol for the intercomparison of 
national CH4 emissions” that was developed under T5.6 (Scholze et al., 2023), hereafter 
named Inversion Protocol.  A cartesian longitude-latitude grid over Europe is used with a 
rectangular domain over [15°W,35°E] longitude and [35°N,70°N] latitude. The grid resolution 
is 0.5°x0.5° which leads to a total of 100 x 70 grid cells, with size of about 25 km x 50 km at 
mid-European latitudes. In the vertical 12 layers are used that cover the troposphere up to 
about 200 hPa; the layers are a coarsening of the ECMWF meteorological model layers, with 
the lowest layer about 20 m thick. 
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The meteorological data are obtained from ECMWF from the operational daily forecasts over 
0-12 hours; surface fields are obtained at hourly resolution, while 3D fields are retrieved at 3 
hourly resolution. 

In this study, the model is configured to simulate CH4 only. The only processes required are 
emissions (described below), transport (advection and vertical mixing), and chemical sink. For 
the sinks the model reads concentration fields of the hydroxyl radical (OH) that has been saved 
from a previously performed simulation with full chemistry configuration (all trace gases and 
aerosols related to air quality). In the inversion framework, boundary conditions are set to zero 
since from the observations the contribution from the global background will be removed. 

For use in inversion systems, the model could read time series of 2D parameter fields to 
perturb the model data, in this case the emission fields. Specific for 4D-var methods the model 
could run in adjoint mode to compute the sensitivity of observation simulations towards 
changes in the parameter fields. 

 

3.8.1.2 Prior fluxes and assimilated observations 

The prior fluxes have been provided by the T5.6 Inversion Protocol. These include fossil fuel, 
agricultural, and waste treatment emissions from EDGAR v6.0, peatlands and soil uptake from 
JSBACH-HIMMELI, biomass burning from GFED, and other smaller sources. 

Observations of CH4 have been taken from the Inversion Protocol too. The data consists of a 
set that should only be used for validation only, and a set from which (selected) observations 
could be analysed. Only observations from non-elevated locations (below 1500 m above sea 
level) are used, and only if the local-standard time (longitude based) is within [12:00,16:00]. 
This ensures that the observations used in the inversion are sampled from well-mixed air 
volumes that are not strongly influenced by local sources. Observation errors are taken from 
the values in the data set (if provided), with a minimum of 3 ppb. At the moment this is the only 
contribution to the observation representation error that is taken into account; contributions 
from the spatial, vertical, and temporal sampling from the model are not included yet. 

The inversion system will try to optimise the local emission only. Therefore, the contribution of 
the global background has been subtracted from the observations. These baseline 
concentrations were provided to the Inversion Protocol by the CAMS global CH4 emission 
inversion system following the (Rödenbeck, 2009) approach. An example of these baselines 
is shown in Figure 50. In this way, boundary conditions for the model could be set to zero as 
the contribution from the global background is taken into account via the baselines. 

 

Figure 50: Example of CH4 baseline concentrations (green) for observations (black) in 
Heidelberg (Germany, Institut für Umweltphysik). The red line shows the posterior simulation 

by the TM5 global inversion system that was used to compute the baselines. 



CoCO2 2023  
 

Intercomparison of national-scale inversion systems 95 

 

3.8.1.3 State vector 

The state vector x for the inversion consist of emission deviation factors x per grid cell and 
month that are applied to the emissions following: 

𝐸(𝑖, 𝑗, 𝑡)  =  𝐸𝑏(𝑖, 𝑗, 𝑡) [ 1 +  𝑥(𝑖, 𝑗, 𝑡) ]  

where Eb denotes the prior emissions, E denotes the actual emissions, i,j  denotes the grid 
cell, and t denotes the time (month). The prior estimate xb is zero. The 4D-Var inversion 
system optimises x by minimising the cost function: 

𝐽(𝑥)  =  1/2 (𝑥 − 𝑥𝑏)𝑇𝐵−1(𝑥 − 𝑥𝑏)  +  1/2 ( 𝐻(𝑥) − 𝑦)𝑇𝑅−1(𝐻(𝑥) − 𝑦)   

Here, B is the background covariance that describes how the state elements are allowed to 
vary from their prior estimate. In the current application, the elements of x are given a standard 
deviation of 0.5, equivalent to a relative uncertainty of 50% in the emissions. The spatial 
correlation between the emissions factors is parameterized with a Gaussian decay with a 
length scale L=100 km, and the temporal correlation follows an exponential decay with a time 
scale of τ=1 month. The observations y contain the above described observation selection 
with the baseline concentrations removed. Observation operator H(x) simulates the 
observations for a given state vector using the LOTOS-EUROS simulation model. The 
observation representation error covariance R contains the above described observation 
uncertainty, with no correlations between observations. 

The cost function is minimised in an iterative procedure, where each iteration consists of one 
forward and one adjoint simulation with the model. Since the model includes a single tracer 
only, a full minimization could be performed in a reasonable time period of about a week. 

 

3.8.1.4 Period of study 

The current study applies the inversion system to 2018 only. 

 

3.8.2 Results 

For a first impression of the inversion results, Figure 51 shows maps of the CH4 emissions 
over 2018. The left panel shows the a priori emissions, with the high emission regions over 
Netherlands, northern Italy, and southern Poland. The right panel shows the analysis 
increment obtained from the inversion, derived by combining the optimal state x with the a 
prori emissions. The markers in the later panel show the locations of the sites from which 
observations are used in the inversion. The analysis increments are roughly only non-zero if 
an observation site is within about 300-500 km distance. An exception is formed by the 
emissions of Poland, which are increased by the inversion although not directly observed by 
an observation site. Higher emissions are in general obtained for the whole of central and 
eastern Europe. In contrast, emissions are decreased in for example the Netherlands and 
Belgium, northern Italy, the Paris region, and the central U.K. An isolated increase of 
emissions is also estimated for the southern North Sea. 

It should be kept in mind that the structure of the emission changes is also defined by the 
assumed spatial length scale in the background covariance; a different length scale might lead 
to different patterns in regions that are not strongly constrained by the observations. 
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The largest relative changes are seen for northern Scandinavia, where the already low 
emissions (mainly from wetlands) are further reduced. For interpretation of the emission 
changes, a selection of concentration time series at observation sites is shown in Figure 53, 
where the baselines concentrations obtained from a global inversion were subtracted. The 
emissions in northern Scandinavia are mainly constrained by site Pallas in Finland, for which 
the concentration time series is shown as the fifth panel. The lower emissions around Pallas 
bring simulations closer to the observations, especially in summer. 

  
 

Figure 51: Map of a priori CH4 emissions for 2018 (left) and analysis increment from inversion 
(right). The magenta markers in the right panel show the locations of the observation sites that 

were included in the inversion. 

 

Figure 52: Time series of estimated emissions for selected regions in Europe. Dashed lines 
show a priori estimates, solid lines show posterior estimates. Total emissions over the year are 
shown in the legend as “prior ; posterior”. 

Figure 52 shows the time series of emissions aggregated over four selected (groups of) 
countries. The selection is the same as what was used in (Bergamaschi et al., 2022) that 
evaluated the results of a high-resolution European CH4 inversion too. The legend with the 
region names also shows the prior and posterior totals over the year.  

• For Germany, the estimated total posterior CH4 emissions are 2.8 Tg/year which is equal 

to the prior estimate. However, within the year the changes are substantial, with 
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increased emissions in spring (March-April) and decreased emissions in early winter 

(January and November-December). The spatial pattern of the emission increments in 
the individual months is rather similar to the yearly pattern shown above, with lower 

emissions in north-west, and higher emissions in the south and east of the country. The 
higher emissions are seen in the whole of central Europe, and are mainly enforced by the 

observations in Hegyhátsál (first panel in the figure with concentrations) that require an 
emission increase for a better simulation, especially in the winter months. 

• For France, a small net decrease from 2.8 to 2.6 Tg/year is estimated for the yearly total 
CH4 emission. Within the year, similar to Germany, an increase in emissions is estimated 

for early spring and a decrease for winter but also for early summer. The lower emissions 
are mainly due to decreased emissions from the Paris region, Bretagne, and central 

France; higher emissions are estimated for the east of the country. The lower emissions 

around Paris are mainly imposed to obtain lower concentrations in nearby site Saclay, for 
which the time series are shown in the second panel of the figure below. 

• The inversion estimates substantially lower emissions for the BeNeLux countries. The 
yearly total emissions have decreased from 1.4 Tg/year to 0.9 Tg/year. The decrease is 

rather stable over the year, with the exception of July for which a small increase is 

estimated. The emissions in the region are mainly constrained by site Lutjewad in the 
north of the Netherlands, for which concentration time series are shown in the third panel 

of the figure below. The time series show that especially outside the summer the 
simulations are improved if emissions are decreased in the region. 

• Also for the U.K.+Ireland the net emissions are lower, although less strong than for 

BeNeLux. Especially in Ireland and the central U.K. emissions are decreased, for 
example to obtain better simulations in Mace Head (fourth panel in the figure below). The 

decrease of emissions is strongest in summer and autumn, in March a net increase is 
seen. 

The estimated emissions have been compared with the values shown in Figure 2 of 
Bergamaschi et al., (2022), denoted as (B2022) in the remainder. In that study, the estimated 
posterior emission estimates are more constant and do not show the strong increase in March-
April that is seen here. A main difference is also that for the BeNeLux countries a net increase 
of emissions was estimated instead of the decrease found here. However, in (B2022) also 
observations from Cabauw (NLD) were taken into account which lead to an overall decrease 
of emissions around that site, and rather strong changes over small distances. The resolution 
of the simulation model might have a strong influence therefore. For the other regions the 
differences between (B2022) and this study are smaller: for Germany and the U.K.+Ireland a 
similar change in yearly total emissions is estimated; for France, (B2022) estimated a small 
increase in emissions while this study found a small decrease. The differences between 
(B2022) and this study shows that differences between inversion systems could be large, and 
require further experiments to determine the sensitivity to the simulation model, resolutions, 
and uncertainty specifications.  
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Figure 53: Time series of observed and simulated observations at selected stations, where the 
baseline concentrations computed by a global inversion have been removed. Only samples 

that are used in the inversion are included in the time series, thus excluding samples outside 
[12:00,16:00] local time. 
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3.9 GEOS-Chem for CO2 inversions from in situ and satellite observations 
(UEDIN) 

3.9.1 Model description 

Here, we describe the measurements we use to infer CO2 fluxes across the UK and mainland 
Europe; the GEOS-Chem atmospheric chemistry transport model that describes the 
relationship between a priori inventories, atmospheric chemistry and transport, and the 
observed atmospheric concentrations of CO2; and the ensemble Kalman Filter that is used to 
infer CO2 fluxes from a priori knowledge and the measurements. 

 

3.9.1.1 Transport model 

The forward model describes the relationship between a priori flux estimates of CO2 and CO 
and the atmospheric observations. We use the GEOS-Chem atmospheric chemistry transport 
model to relate surface fluxes of CO2 and CO to 4-D atmospheric concentrations. We then 
sample these concentration fields at the time and location of measurements. In the case of 
satellite observations, we also use the scene-dependent averaging kernel to describe the 
instrument's vertical sensitivity to changes in CO2 and CO. Resulting sampled model 
atmospheric values can then be compared with observations: 

  

y = H . x (Eqation UE1)  

  

where y denotes the observation vector, and x denotes the state vector that includes our a 
priori CO2 and CO flux estimates. 

We use the GEOS-Chem version 12.5.2 atmospheric chemistry and transport model which 
we run at 0.25° x 0.3125° resolution for a nested European domain (15°W to 35°E longitude 
and 34°N to 66°N latitude, Figure 54) with 47 vertical levels. GEOS-Chem is driven by 
meteorological reanalyses fields from the NASA Global Modelling and Assimilation Office 
(GMAO) Global Circulation Model. 

Our a priori flux estimates include all sources contributing to observed atmospheric CO2 and 
CO. Equation UE2 shows the sources for CO2 including combustion emissions (CO2

Combust), 
non-combustion fluxes (CO2

Bio), and background CO2 that is transported to and from our 
domain (CO2

Trans). Atmospheric CO sources include combustion emissions (COCombust), 
transport (COTrans), and production of CO through oxidation (COChem), as shown in equation 
UE3. 

  

 CO2 = CO2
Trans  +  CO2

Combust + CO2
Bio   (Equation UE2) 

 CO = COTrans  +  COCombust + COChem  (Equation UE3) 

   

For our nested domain, we use boundary conditions for CO2 (CO2
Trans) from the CAMS 

inversion-optimized global greenhouse gas analysis with assimilation of in situ observations 
(Chevallier, 2020). Our boundary conditions for CO (COTrans) are from the CAMS global 
reanalysis (Inness et al., 2019). We use the CAMS fields at their provided temporal resolution 
(3-hourly) and re-grid to the GEOS-Chem horizontal spatial resolution of 2° x 2.5°. Because 
the vertical resolution of GEOS-Chem does not align with CAMS, we translate the CAMS 
native vertical resolution to our 47 model layers using linear interpolation of logarithmic 
pressure values. We fill in the species concentrations at the lowest or highest pressure level 
in CAMS for the top or surface of the atmosphere, respectively, when the GEOS-Chem 
pressure levels go beyond the bounds of CAMS. 
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We treat the relationship between surface fluxes and concentrations (equation UE1) as linear 
(e.g., a doubling of emissions leads to a doubling of the atmospheric signal). To linearize the 
CO simulation, we use offline chemistry terms to represent the chemical production of CO 
(COChem). CO is primarily produced by oxidation of methane and non-methane volatile organic 
compounds by the hydroxyl radical (OH), so we generate the production terms using offline 3-
D loss fields of OH generated from a previous GEOS-Chem full-chemistry simulation (Fisher 
et al., 2017). 

 

3.9.1.2 Prior fluxes and assimilated observations 

Prior fluxes 

For our 2018-2021 a priori fluxes, we use a combination of regional and global inventories 
(Figure 54). Combustion emissions for both species (CO2

Combust and COCombust) are from the 
TNO GHGco v3.0 emission inventory at 0.1° x 0.1° resolution (Super et al., 2020; Kuenen et 
al., 2022) with national totals based on emissions reported in national inventories and 
extrapolated from 2019 to more recent years. We apply scaling factors provided by TNO to 
reflect monthly, hourly, and daily patterns in emissions by sector. Our combustion source also 
includes biomass burning emissions from the GFAS v1.2 inventory (Kaiser et al., 2021). Non-
combustion fluxes (CO2

Bio) include ocean fluxes from the NEMO-PISCES model (Lefèvre et 
al., 2020), lateral carbon fluxes related to crop removal (Deng et al., 2022), and hourly 
terrestrial biosphere fluxes at 1/120° x 1/60° resolution produced by the VPRM model following 
methods described by Gerbig (2021) driven by ERA5 meteorology. We include non-
combustion anthropogenic emissions from the TNO inventory in our non-combustion fluxes. 
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Figure 54: Annual mean emissions for 2018-2021 in the a priori inventories. Combustion 
emissions (CO2ff, COff) are from the TNO inventory while biogenic fluxes (CO2bio) are from the 

VPRM model. 

 

Satellite and In Situ Observations 

For CO2, we use observations of the atmospheric CO2 column-averaged dry-air mole fraction 
(XCO2) from the OCO-2 satellite, launched in 2014 (Crisp et al., 2017; Eldering et al., 2017). 
We use OCO-2 ACOS v10r data for 2018-2021 (OCO-2 Science Team et al., 2020; Taylor et 
al., 2023). For CO, we use XCO observations from TROPOMI, July 2018 - December 2021, 
aboard the Sentinel-5p satellite, launched in 2017 (Veefkind et al., 2012; for CO retrieval: Vidot 
et al., 2012; Landgraf et al., 2016). For both satellite products, we filter observations as 
recommended in the Product User Guide, including a strict quality assurance flag of >0.75 for 
TROPOMI XCO. We remove glint observations and those over the oceans and re-grid satellite 
columns and averaging kernels to a 0.25° x 0.3125° spatial grid to match model output (Figure 
55). To compare our model output to the satellite observations, we first sampled the model at 
the time and location of each instrument. We then interpolate our model pressure levels to the 
satellite pressure levels and apply the scene-dependent retrieval averaging kernel to our 3-D 
model concentration fields. 

We use in situ observations for 2018-2021 (Figure 55). We use the DECC surface 
measurement network in the UK (Stanley et al., 2018) and the ICOS measurement network 
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for Europe (ICOS R., 2022), including drought adjusted observations for 2018 (Ramonet et 
al., 2020). We retain in situ observations collected between 0900 and 1800 local time – to 
avoid instances when the tall tower inlets sit above a shallow boundary layer – and then time-
average to 3-hourly intervals to match our GEOS model meteorology. All in situ sites have 
CO2 observations, but some sites are missing CO observations. We additionally remove 
observations when the atmosphere is not well-mixed, diagnosed where the standard deviation 
of CO2 concentrations across the lowest five vertical model levels is smaller than 0.3 ppm. 

Figure 55 also shows European sites from the Total Carbon Column Observing Network 
(TCCON). Five sites are within our domain, including Bremen (Germany), Karlsruhe 
(Germany), Nicosia (Cyprus), Orléans (France), and Paris (France). We use the TCCON 
observations as an independent comparison for our inversion results. 

 

Figure 55: Annual mean CO2 and CO observed by satellite and in situ networks across Europe 
for 2018-2021. Satellite observations of XCO2 and XCO are from OCO-2 and TROPOMI, 

respectively, and in situ observations are from the DECC and ICOS networks. The red X points 
in the in situ CO plot show the locations of the five TCCON sites we used to evaluate our 

inversions. The observations are filtered as stated in the text and satellite observations are 
shown at 0.25° x 0.3125° resolution. TROPOMI observations only include observations after 

July 2018. 

 

3.9.1.3 State vector 

For our inversion, we use the Ensemble Kalman Filter (EnKF) approach as discussed in detail 
by others (e.g., Peters et al., 2005; Hunt et al., 2007; Feng et al., 2009; Liu et al., 2016). We 
specifically follow the methods derived by Hunt et al. (2007) and summarized by Liu et al. 
(2016) for the Local Ensemble Transform Kalman Filter (LETKF). 

We solve the inversion in ensemble space rather than for the state vector elements. For each 
state vector element, we have an ensemble of potential scale factors that follow our prescribed 
error statistics. For each assimilation time-period (over which we ingest observations), we 
solve for the mean a posteriori state vector that represents the mean of our N ensemble 
members (where we use N = 100): 
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For CO2, we use an a priori model error of 1.5 ppm for the satellite inversion (Feng et al., 2017) 
and 3 ppm for the in situ inversion (within the range of Monteil et al., 2020 and White et al., 
2019). For CO, we use an a priori model error of 15 and 20 ppb for the satellite and in situ 
inversions, respectively (Northern Hemisphere CO column and surface mole fraction model-
observation differences from Bukosa et al., 2023). We use the observation errors as provided 
for the satellite or in situ network, averaged to the model resolution. We generate the off-
diagonal error covariances based on the spatial and temporal proximity of observations 
following an exponential decay with spatial and temporal length scales of 100 km and 4 hours, 
respectively. 

We use an assimilation window of two weeks and a lag window of one month, accounting for 
the impact of historical emissions on our assimilation period. This means that the state vector 
for each time-step includes scale factors for the assimilation window and lag window. We 
perform our inversion sequentially, using the a posteriori scale factors for a given assimilation 
window to update the a priori scale factors for the next lag window over the same date range. 
To avoid unrealistically small prior uncertainties, we apply a 10% error inflation when we 
update the a priori state vector. 

The benefit of the LETKF is that we can localize the inversion so that each state vector element 
is only influenced by a subset of observations. For our inversions using in situ observations, 
we localize by distance so that each state vector element that represents a grid-scale variable 
is only influenced by observations within a 1000 km range. 

We test different approaches to investigate the usefulness of satellite observations for 
evaluating CO2 combustion emissions. The approaches vary in the observations that are used 
and the representation of error covariances for our a priori estimates. For each type of 
inversion, we compare our satellite inversion results to comparable inversions using in situ 
observations. 

In the inversions, instead of solving for CO2 or CO fluxes, we solve for scale factors that scale 
up or scale down the source terms from equations UE2 and UE3. We first assume that our a 
priori scale factors are all equal to one. We solve for a posteriori scale factors that, when 
applied to our source terms, will result in modelled atmospheric CO2 or CO concentrations in 
better agreement with observations. 

For our first approach, we perform a CO2-only inversion that assimilates CO2 observations. 
Our state vector includes scale factors for the sources of equation UE2. Each scaling factor 
applies to a non-combustion or combustion grid cell at 0.5° x 0.625° resolution. For the 
transport scale factors, each element applies to CO2 transported from the North, South, East, 
or West boundary. 

In our second approach, we perform a joint CO2:CO inversion that assimilates both CO2 and 
CO observations. For the joint inversion, we assume there is 100% correlation for the CO2 
and CO combustion emission errors. This means any adjustment made by our inversion to 
the CO2 combustion scale factors will also apply to the CO scale factors and vice versa. We 
can then use a common combustion scaling term for both species in our state vector. Our 
state vector also includes scale factors for transport of each species, and for CO we include a 
vector with two scale factors for the chemistry terms. 

For our first two approaches, we assume a prior uncertainty of 20% (relative standard 
deviation) for the combustion scale factors. We use an a priori uncertainty of 50% for the non-
combustion scale factors, and 5% for the atmospheric transport and chemistry scale factors. 
For our non-combustion and combustion scale factors, we generate error covariances for 
nearby grid cells that exponentially decays with increasing distance.  

We acknowledge that the assumption of 100% error correlation for CO2 and CO combustion 
emissions is likely to be a gross overestimate. For example, we may underestimate CO 
emissions due to an underestimate of incomplete combustion activities, and this will not 
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translate to the same underestimate in CO2. So, for our third approach, we test this assumption 
by solving for the CO2 and CO combustion scaling terms separately. 

We call this our TNO approach because we use estimates of the uncertainties in the TNO 
emission inventory to create our error covariance matrix (Super et al., 2023). We increase the 
provided uncertainties by a factor of 3 to make them more comparable with our other 
simulations. This results in a mean grid-scale CO2 combustion uncertainty of 18%, though 
there is greater variability in grid cell uncertainties compared to our other approaches. We 
expect higher correlation between CO2 and CO gridded emissions in regions where the same 
spatial product is used to distribute emissions for both species (e.g., road network maps) and 
that spatial product has high uncertainties. 

 

3.9.1.4 Period of study 

We report fluxes from 2018 to 2021, inclusively. 

 

3.9.2 Results 

First, we describe the comparison between our a priori and a posteriori model simulations 
against observations. We then report our a posteriori CO2 fluxes for Europe and its constituent 
countries and the UK. 

 

3.9.2.1 Inversion performance 

 Our a priori CO2 emissions are already consistent with data from the five relevant TCCON 
sites (locations shown in Figure 55; R= 0.87), and in situ (R=0.76) and satellite (R=0.84) 
observations. The model has small, positive relative mean bias compared to TCCON (0.7%) 
and a very small bias compared to in situ and satellite observations (0.2%). The satellite 
inversions show improvement for the model-satellite fit (R=0.92-0.95), as expected, and the 
model-in situ fit (R=0.80-0.82). Similarly, the in situ inversions improve model-in situ fit 
(R=0.83-0.84) and to a lesser extent the model-satellite fit (R=0.85-0.87). 

  

In general, including CO and TNO uncertainty estimates improves the model-observation fit 
and reduces the mean bias. For example, the satellite joint CO2:CO (R=0.93) and TNO 
(R=0.92) inversions show the greatest improvement in fit with TCCON. The one exception is 
that the mean bias compared to TCCON is slightly larger with CO (0.3-0.5%) compared to 
CO2-only (0.2-0.4%). The TCCON bias is seasonal with the a priori model showing no bias in 
July-August and a positive bias of 1-4 ppm for the rest of the year. The in situ inversions 
reduce the mean bias for March-June by 1 ppm, and this improvement lines up with a reduction 
in the biosphere sink for these inversions (discussed later). 

  

We also assess inversion performance by the degree of uncertainty reduction for the a 
posteriori CO2 combustion emissions. Table 14 shows a posteriori uncertainties for our 
domain-scale CO2 combustion emissions. The reductions in relative uncertainty achieved at 
the domain scale for all inversions are small (6-12%) with the CO2-only and TNO satellite 
inversions showing no reduction. The TNO inversions show smaller reductions in uncertainty 
(0-6%) compared to the joint inversions (8-12%), but they also start with a lower a priori 
uncertainty at 1.6% (relative standard deviation; RSD) compared to 2.4% for non-TNO a priori 
uncertainties. 
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Table 14: Average domain CO2 combustion emissions for 2018-2021 

 Mean (Gt a-1) RSD a 

(%) 

  Emission Change a 

A priorib
 

4.9   2.4 

TNO a priorib 4.9   1.6 

Satellite      

 CO2-only 4.9 - 2.4 

 Joint  CO2:COc 4.6 ▼ 2.1 

 TNO  CO2:COc 4.8 - 1.6 

In-situ      

 CO2-only 4.8 ▼ 2.2 

 Joint  CO2:CO 5.0 ▲ 2.2 

 TNO  CO2:CO 4.9 - 1.5 

 

aThe arrows indicate the change of the mean from the a priori. Blue-downward pointing arrows 
show a decrease, red-upward show an increase, and grey dashes show no change. RSD 
stands for relative standard deviation. 

bThe a priori uncertainty labelled as ‘A priori’ is for the CO2-only and joint inversions, so we 
also include the a priori uncertainty for the TNO inversion. 

cThe Joint and TNO satellite inversions only include July 2018 - December 2021. The a priori 
combustion emission for this period is 4.8 Gt a-1 so we show no change for the TNO a posteriori 
emissions. 

  

At the national-scale, we see the greatest uncertainty reduction in CO2 combustion emissions 
for the top 10 emitting countries when satellite CO observations or in situ CO2  measurements 
are included and the non-TNO uncertainties are used (not shown). The average uncertainty 
reductions for the joint satellite and CO2-only in situ inversions are 11% and 9%, respectively. 
This is not surprising given the greater number of observations provided by these two 
platforms and increased sensitivity to surface fluxes compared to OCO-2. Including in situ CO 
observations in the inversion does not improve the national-scale uncertainty reduction. 
Because we use lower a priori uncertainties in the TNO inversion (national-scale 2-10% RSD) 
compared to the other inversions (6-14% RSD), fewer countries have reduced uncertainties 
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for the TNO inversion, though a posteriori uncertainties are reduced in the Netherlands (2%) 
for both in-situ and satellite compared to a priori uncertainties (3%). 

  

3.9.2.2 European-scale Emission Estimates 

  

Table 14 shows our mean European combustion emissions for 2018-2021. The inversions 
show a small decrease or no change from the a priori emissions (4.9 Gt a-1), except for the 
joint satellite and in situ inversions that show a larger decrease (4.6 Gt a-1) and an increase 
(5.0 Gt a-1) from the a priori, respectively. Figure 56 shows that the joint satellite inversion 
decreases combustion emissions year-round for all years with the greatest decreases in 
winter. The TNO satellite/in situ and CO2-only in situ inversions also show decreases in the 
winter and early spring (Figure 56 and Figure 57), providing more confidence in this scaling 
down of emissions. 

 

 
Figure 56: Annual and monthly mean European CO2 combustion and non-combustion 

emissions inferred from satellite inversions for 2018-2021. The top row shows annual mean 
CO2 flux estimates by inversion type, with errors bars showing the 1-σ errors except for the a 

priori errors which are shown as a shaded region. The bottom row shows monthly mean fluxes 
for 2018-2021. The TNO and joint inversions only include July 2018-December 2021 for 

combustion and 2019-2021 for non-combustion. 
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Figure 57: Same as Figure 56 for in situ inversions. 

 

In contrast, the joint in situ inversion shows an increase for all months and all years (Figure 
57). This pattern is not reflected in our other inversion approaches and is likely, in part, due to 
an underestimation of the fine-scale variability in CO measured at some in situ sites, leading 
to an over-correction upward of combustion emissions. For example, we find that removing a 
single site close to an urban region in northern Italy (Ispra ICOS site) reverses the sign of 
scaling in the region from an increase to a decrease. The disagreement between satellite and 
in situ CO2:CO inversions is less pronounced for the TNO inversions because the separation 
of CO2 and CO in our state vector prevents the CO underestimates from heavily influencing 
the CO2 combustion emissions. 

  

Figure 56 shows a slight (1%) decrease in mean a priori combustion emissions from 2018 to 
2021, and all satellite and in situ inversion results show a similar trend (Figure 56 and Figure 
57). The mean a priori non-combustion CO2 sink shows a slight increase (1%) for 2018-2021, 
and the inversion results show a similar (satellite; Figure 56) or greater increase (in situ; Figure 
57) in the CO2 sink. Figure 57 shows the monthly mean non-combustion CO2 sink is weakened 
for the in situ inversions, mostly in summer, whereas Figure 56 shows almost no change in 
the sink for the satellite inversions, indicating that the CO2 in situ observations are needed for 
constraining biogenic flux estimates. 

  

The differences between a posteriori and a priori annual emissions for all inversions except 
the Joint satellite inversion are not statistically significant and remain within the 1-σ 
uncertainties of the a priori estimate. The inter-annual trends are also smaller in magnitude 
than the a posteriori uncertainties, making it difficult to assess if CO2 combustion emissions in 
Europe have decreased from 2018 to 2021.  
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3.9.2.3 National-scale Emission Estimates 

  

Figure 58 shows national CO2 combustion emissions for the top 10 emitting countries in our 
European domain. Germany is the highest emitter with an a priori emission of 821 Tg a-1. Most 
inversions show a decrease in Germany’s emissions (717-806 Tg a-1) except for the in situ 
joint inversion which shows an increase (830 Tg a-1) and the CO2-only inversion which shows 
little change from the a priori estimate (819 Tg a-1). The other top emitting countries, including 
Poland, the UK, France, Italy, Spain, Belgium, the Czech Republic, the Netherlands, and 
Romania, show emissions decreases for the satellite joint (3-17%) and TNO (0-4%) 
inversions. The in situ CO2-only and TNO inversions generally show only small changes (<1%) 
in national emissions except for a 4% national emission decrease in the Netherlands and 
Belgium for the CO2-only inversion.   

 

 
Figure 58: Annual mean a priori and a posteriori CO2 combustion emissions by country for 
satellite (top) and in situ (bottom) inversions. We show the top 10 emitting countries in our 

European domain with emissions averaged over 2018-2021. The TNO and joint satellite 
inversion averages do not include dates prior to July 2018. 

 

The joint inversions show the largest changes in national emissions but in opposite directions. 
In contrast, the TNO inversions show smaller changes from the a priori (in part, due to the 
lower a priori uncertainties) and better agreement, including agreement in Germany where 
there is greater divergence from the a priori estimate (2% decrease for both TNO inversions). 

  

Despite the national-scale disagreements for some inversions, we find regional corrections to 
combustion emissions are consistent for all inversions. Figure 59 shows that the densely-
populated North Rhine-Westphalia region in western Germany shows a decrease in CO2 
combustion emissions for all inversions. The TNO and CO2-only inversions show mixed 
corrections in Poland with TNO inversions showing the best agreement. Most inversions, 
including both TNO inversions, show an increase in emissions near Milan and Vienna, but 
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over other major cities like Paris, Madrid, and London there is less agreement in the sign and 
magnitude of the emissions changes. 

 

 
Figure 59: Annual mean CO2 combustion emissions difference (a posteriori minus a priori) for 
satellite (top row) and in situ (bottom row) inversions, 2018-2021, shown at the native model 
resolution of 0.25° x 0.3125°. The TNO and joint satellite inversion averages do not include 

dates prior to July 2018. 

 

The differences in the joint inversions are due to contrasting corrections to CO emissions that 
carry over into the CO2 emissions. We find that the in situ joint inversion shows decreases for 
high-emitting regions in Europe for winter and spring, but this is mostly offset by large emission 
increases in summer and fall (not shown). In contrast, the satellite joint inversion shows 
decreases for all seasons. For the TNO inversion, there is less disagreement between the 
seasonal emissions corrections for CO2, but there are disagreements in CO corrections. We 
also find that CO corrections for the TNO inversion generally occur at the national-scale (not 
shown) and we know there is low error correlation between the two species at the national-
scale (Super et al., 2023), so it is not surprising that these corrections do not carry over to 
CO2. 

  

Figure 60 shows national non-combustion emissions for the countries in Figure 58.  All 
countries show a net sink with France having the largest net sink. The in situ inversions tend 
to decrease (lessen) the CO2 sink for all countries and reduce uncertainties. Figure 61 shows 
the spatial pattern in the flux changes is consistent for all in situ inversions. In contrast, the 
national CO2 non-combustion fluxes show little change from the a priori for the satellite 
inversions, highlighting the importance of in situ CO2 observations for constraining biogenic 
flux estimates. For all inversions, the CO2 sink in northern Germany is strengthened (more 
negative fluxes) and weakened in southern Germany and Switzerland, though there are 
conflicting corrections in surrounding regions such as France and northern Italy. These 
disagreements may be due to the differing observing capacities with satellites having seasonal 
limitations due to snow and clouds. We find low a posteriori error correlations between 
national-scale combustion and non-combustion fluxes (mostly R < 0.1, except for Germany R 
= 0.2 negatively correlated), indicating that the disagreement in in situ and satellite a posteriori 
non-combustion fluxes will not carry over into combustion emission estimates. 
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Figure 60: As Figure 58 but for non-combustion CO2 fluxes estimates. The TNO and joint 

satellite inversion averages do not include 2018. 

 

 
Figure 61: As Figure 59 but for non-combustion CO2 flux estimates. The TNO and joint satellite 

inversion averages do not include 2018. 

 

3.9.3 Concluding remarks 

We find that using CO2 satellite observations from OCO-2 alone cannot reproduce a posteriori 
European CO2 fluxes inferred from the European in situ CO2 measurement network. The 
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satellite observations (CO2-only) do not show significant combustion emissions changes from 
our a priori estimates, whereas when we use in situ CO2 or CO2 and CO satellite observations 
we see greater divergence from the a priori emissions. All our inversions indicate that CO2 
combustion emissions for regions of Germany are overestimated in winter, and most 
inversions show this overestimate extends to other countries in Europe. We also find that the 
in situ inversions show a smaller summertime European CO2 sink which is not shown for the 
satellite inversions. 

We find that using CO observations and TNO error estimates leads to better agreement 
between satellite and in situ inversions and the best model-observation fit. The one exception 
we find is that the model bias compared to TCCON does not improve when we include CO. 
This is likely because the bias is in part due to biogenic fluxes, and only including in situ CO2 
observations provides a useful constraint for biospheric flux estimates. In general, these 
improvements in model-observation fit are small and we do not see significant reduction in 
uncertainties compared to our a priori estimate. 

The use of CO as a tracer for combustion in a CO2 inversion system is promising for improving 
our ability to track CO2 combustion emissions, though we find that our interpretation of results 
is highly dependent on the assumptions of a priori error correlation between CO and CO2. The 
in situ network is still essential for constraining non-combustion fluxes, but we find low 
correlation between combustion and non-combustion fluxes so the differences in biogenic flux 
estimates does not prevent the estimation of combustion emissions at the national scale using 
satellite observations. 

We find that the existing observational networks are not able to significantly reduce the errors 
for our European or national emission estimates to the extent necessary for distinguishing 
inter-annual emission trends that represent only a few percent of total emissions. Our results 
also show that including co-emitted species in the inversion improves our ability to estimate 
combustion emissions of CO2, suggesting that the increase in observational capacity for CO2 
and co-emitted trace gases promised by the Copernicus CO2 Monitoring (CO2M) satellite 
mission may improve our ability to constrain regional and national emission estimates. 

Despite the sensitivity of our a posteriori emission estimates to the choice of a priori CO2 and 
CO uncertainties, we find that the existing observing system is not able to clearly distinguish 
between inversion results, with the joint and TNO satellite inversions performing similarly. This 
highlights the need for not only further satellite observing capacity but also improved ground-
based networks for evaluating satellites and the usefulness of including co-emitted species 
observations. 

 

3.10 CIF-FLEXPART for CH4 inversions from in situ observations (FMI) 

3.10.1 Model description 

We utilize the Community Inversion Framework's (CIF) 4-dimensional variational optimization 
approach (4DVAR) as the backbone of our inversion system (Berchet et al. 2021). To evaluate 
source receptor sensitivity and estimate footprints, we use the Lagrangian Particle Dispersion 
Model (LPDM), FLEXible PARTicle dispersion (FLEXPART) model, driven by ECMWF's ERA5 
reanalysis data. 

 

3.10.1.1 Transport model 

Our inversion system uses FLEXPART v10.4 as its atmospheric transport model, which is a 
widely-used open-source LPDM. FLEXPART is employed to replicate the dispersion and 
turbulent mixing of gases and aerosols in the atmosphere (Stohl et al. in 1995; Pisso et al. in 
2019). This model relies on meteorological data, either reanalyses or forecasts, for its 
operation. In this study, we employ meteorological input data from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) (Hittmeir et al.  2018). The ECMWF data are 
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available at hourly intervals, span 137 vertical layers, and features a horizontal resolution of 
~0.25° x 0.25°, though here a resolution of 1° × 1° is used. 

To prepare the ECMWF ERA5 reanalysis data for use, we utilize the Flex-Extract toolbox 
(Tipka et al. 2020). We then run the FLEXPART model to generate source-receptor sensitivity 
matrices. For each observation event, we conduct a 10-day backward transport simulation 
using the FLEXPART model to produce surface flux footprints. These footprints are saved with 
a resolution of 0.2° × 0.2° for the nested region and 1° × 1° for the global domain, all of which 
are stored at hourly intervals. For atmospheric greenhouse gases like CH4 which have longer 
atmospheric lifetime, the footprints need to be coupled with background concentration. Thus, 
we use concentration from CAMS global inversion-optimised greenhouse gas 
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-
inversion?tab=overview).  

We have defined the region boundary of the nested domain to align with JSBACH, which is 
responsible for calculating the CH4 biogeochemical flux. The region is specified as: longitude 
ranging from 12° W to 37° E and latitude ranging from 35° N to 73° N. This precise geographic 
area has been chosen to ensure that the data and calculations conducted by JSBACH 
accurately represent the CH4 biogeochemical processes within this specific geographical 
scope. 

 

3.10.1.2 Prior fluxes and assimilated observations 

To estimate methane emissions from various sources and sinks, we incorporate monthly data 
from major categories: anthropogenic, fire, biospheric, as well as climatological estimates for 
ocean, geological, and termite emissions. These datasets are aggregated to provide 
comprehensive methane emission estimates. Our monthly prior flux data for anthropogenic 
emissions are sourced from the EDGAR v6.0 GHG inventory emissions by excluding 
agricultural waste burning, (Crippa et al., 2021), accessed on October 15, 2023, at 
https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60. Monthly prior emission estimates for 
fire emissions are obtained from GFEDv4.1, which encompasses biomass burning, including 
agricultural waste burning. Global biospheric emission estimates are derived from the 
JSBACH ecosystem model products, which replaced LPX-Bern DYPTOP v1.4 for the Europe 
domain. These biospheric emissions result from aggregating emissions from peat, inundated 
soil, and net mineral soil emissions, as calculated by JSBACH. For the ocean prior flux, we 
utilize climatological estimates of ocean emissions from the work of T. Weber (2019). 
Geological prior emissions are derived from the research of Etiope et al. (2019). Lastly, termite 
emissions, as a prior flux, are based on the findings of Ito and Inatomi (2012). 

 We incorporated observational constraints by leveraging data from 43 in-situ measurements 
sourced from Obspack Europe CH4 time series, specifically from 
obspack_ch4_466_GLOBALVIEWplus_v8.0_2023-04-26 downloaded from 
(https://meta.icos-cp.eu/objects/wIrU4_bb2C74Al01I3d9WyzB, last accessed on Oct 17, 
2023). 

In situations where multiple inlet heights were available, as exemplified by the Cabauw station 
with inlets at 27, 67, 127, and 207 meters above ground level, we opted to assimilate data 
solely from the highest inlet. This approach was taken to ensure that the assimilated data was 
representative of the uppermost atmospheric layer, where it can have a more significant 
impact on our understanding of methane concentrations and fluxes.  

 

3.10.1.3 State vector 

We use 4DVAR data-assimilation method to minimize the cost function that represents the 
mismatch between model predictions and observed data: 

https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60
https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60
https://meta.icos-cp.eu/objects/wIrU4_bb2C74Al01I3d9WyzB
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J(x) = 1/2 * (x - xb)ᵀ * B⁻¹ * (x - xb) + 1/2* (y - H(x))ᵀ * R⁻¹ * (y - H(x)) 

where J(x) is the cost function to be minimized, x is the state vector representing model 
variables we seek to optimize, xb is the prior state or initial guess for the state vector x, B is 
the background error covariance matrix, representing the uncertainty in the background state. 
y is the vector of observed data. H(x) is the observation operator, which maps the model state 
x to the observation space. R is the observation error covariance matrix, representing the 
uncertainty in the observed data. The 4DVAR technique seeks to identify the state vector x 
that minimizes the cost function J(x). By minimizing J(x), the data assimilation process aligns 
the model state with both the underlying physics of the model and the observed data. To 
initiate this process, when the state vector x equals xb initially, the local cost function gradient 
J(x) is computed through the adjoint method [Errico, 1997]. Subsequently, this gradient is 
employed in the determination of an updated state vector that leads to a reduced value of J(x). 
The conjugate gradient algorithm [Lanczos, 1950] is utilized for this purpose. This iterative 
process continues until the gradient norm falls below a predefined convergence threshold, 
typically set at 0.1%. We represent emission error correlations, specifically the off-diagonal 
terms of B, by employing a Gaussian function that considers the spatial and temporal 
separation between grid cells. The spatial correlation length is set at 200 km, while the 
temporal correlation length is set at one month. 

 

3.10.1.4 Period of study 

 

3.10.2 Results 

Figure 62 displays sample time series of CH4 measurements obtained from the Cabauw site, 
accompanied by both the prior and posterior estimates generated through the CIF-FLEXPART 
inversion. The results clearly illustrate that the posterior estimates exhibit a significantly 
improved alignment with the observed time series, emphasizing the effectiveness of the data 
assimilation process. 

 

Figure 62: Hourly time series of CH4 concentration sampled at station Cabauw: assimilated 
Obspack Measurement (blue), CIF-FLEXPART Inversion results for posterior concentration 

(green), and prior concentration (red) 
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In Figure 63, we provide a comprehensive analysis of the root mean square error (RMSE), 
bias, and correlation metrics for both the prior and posterior estimates associated with each 
observation integrated into our inversion system. The findings presented in this figure provide 
compelling evidence of the superior performance of the posterior estimates. They exhibit lower 
bias and RMSE values while demonstrating a notably higher level of correlation with the 
observed data. This underscores the substantial enhancements achieved through our data 
assimilation methodology, resulting in more accurate and reliable estimates of CH4 emissions. 
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Figure 63: Statistical findings for the assimilated concentration and CIF-FLEXPART posterior 
and prior: RMSE and Bias (upper panel) and Correlation (lower panel). 

 

In Figure 64, we present a spatial distribution map that depicts both the prior and posterior 
monthly methane flux at a finely gridded resolution of 0.20° x 0.20°. Additionally, we visualize 
the percentage change in the posterior flux compared to the prior estimates, which is 
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calculated as (posterior - prior) * 100 / prior. This figure offers valuable insights into the 
dynamics of methane flux within the region. 

When examining the spatial distribution of methane fluxes, it becomes evident that regions 
such as the Netherlands, Belgium, Ireland, Italy, and Romania, as well as western France and 
the southern United Kingdom, exhibit elevated emissions. Meanwhile, in the northernmost 
parts of Europe, specifically within the Scandinavian countries of Finland and Sweden, the 
figure highlights distinct monthly variations in methane flux. This variability is attributed to the 
influence of seasonal factors on biospheric methane emissions in this area. 

A comparison between the posterior flux and the prior data clearly reveals significant variations 
across different geographical regions. Notably, there is a substantial increase in the posterior 
methane flux over the Netherlands when contrasted with the prior estimates, suggesting a 
potential rise in methane emissions in this region. Conversely, Northern Italy shows a 
reduction in methane flux in the posterior data compared to the prior figures, indicating a 
possible decrease in methane emissions in this part of Italy. 

Our inversion analysis provides an estimate of the total methane (CH4) emissions budget for 
the EU27 + UK, ranging from 13.44 Tg of CH4/year in January to a peak estimate of 17.31 Tg 
of CH4/yr in July. The eight-month average estimate stands at approximately 15.55 Tg of 
CH4/yr, which is consistent with the range of 17.5 ± 2.2 Tg CH4/yr as reported by Petrescu, 
A-M-R. et al. in 2023. The main contributors to methane emissions in the continent are France, 
Germany, Italy, Spain, Poland, and the UK. Collectively, these six countries are responsible 
for emitting approximately 11.12 Tg of CH4/yr during the eight-month period, which accounts 
for 72% of the total emissions. For a more detailed breakdown by country and month, refer to 
Table 15 for the comprehensive monthly country-specific budget. 
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Figure 64: Monthly spatial distribution of CH4 estimates from CIF-FLEXPART inversion at a 
higher resolution of 0.2° x 0.2° grid: prior (left panel), posterior (middle panel) and posterior 
increments computed as (posterior – prior)*100/prior (right panel) . 

 

In addition, Figure 65 presents informative bar plots illustrating the country-specific budgets, 
allowing for a visual comparison of methane emissions among the various regions. This 
graphical representation provides a clear overview of how different countries within the EU28 
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+ UK region contribute to the overall methane budget, highlighting variations and trends in 
emissions across the months. 

 

Table 15: CIF FLEXPART inversion estimates of country total CH4 budget for EU28 and UK for 
the first eight months in the year 2018 in units of TgCH4/year 

Country Jan Feb Mar Apr May Jun Jul Aug 

Austria 0.1248 0.1060 0.0999 0.1052 0.0963 0.0987 0.0978 0.1011 

Belgium 0.0457 0.0537 0.0570 0.0590 0.0512 0.0455 0.0463 0.0493 

Bulgaria 0.1118 0.1199 0.1122 0.1023 0.1105 0.1160 0.1084 0.1084 

Switzerland 0.0215 0.0229 0.0210 0.0209 0.0203 0.0216 0.0201 0.0213 

Cyprus 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

Czechia 0.0770 0.0832 0.1362 0.1184 0.0997 0.0933 0.0989 0.0799 

Germany 1.8032 2.7869 2.3440 2.5785 2.2820 2.1769 2.1395 2.0589 

Denmark 0.0295 0.0303 0.0262 0.0271 0.0256 0.0271 0.0256 0.0295 

Estonia 0.0100 0.0205 0.0152 0.0184 0.0209 0.0223 0.0243 0.0249 

Greece 0.1426 0.1559 0.1305 0.0880 0.1356 0.1428 0.1483 0.1302 

Spain 1.4245 1.5074 1.4753 1.3987 1.3541 1.4046 1.3237 1.3059 

Finland 0.1385 0.7189 0.3618 0.3545 1.3387 1.6475 1.7087 1.8646 

France 3.3559 3.4453 3.1961 3.2102 2.8082 3.0031 3.0950 2.9930 

Croatia 0.0565 0.0736 0.0667 0.0708 0.0225 0.0350 0.0435 0.0654 

Hungary 0.0775 0.0830 0.0754 0.0712 0.0682 0.0737 0.0696 0.0689 

Ireland 0.1153 0.1261 0.1129 0.1192 0.1228 0.1355 0.1343 0.1307 

Italy 1.5824 1.6362 1.3407 1.4950 1.2297 1.5213 1.5240 1.4848 

Lithuania 0.0247 0.0275 0.0228 0.0252 0.0244 0.0267 0.0259 0.0237 

Luxembour

g 

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Latvia 0.0116 0.0126 0.0093 0.0118 0.0132 0.0145 0.0174 0.0162 

Malta 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Netherland

s 

0.1093 0.0991 0.0879 0.0762 0.0568 0.0551 0.0645 0.0606 

Poland 1.4598 1.8040 1.5609 1.7348 1.4031 1.4634 1.4816 1.4087 

Portugal 0.0430 0.0435 0.0436 0.0420 0.0401 0.0421 0.0393 0.0395 

Romania 0.9016 1.2468 0.9927 1.1261 1.1304 1.1649 1.1384 1.1086 

Sweden 0.5343 0.5279 0.4988 0.8100 1.5327 1.8777 2.4667 2.0867 

Slovenia 0.0054 0.0058 0.0052 0.0051 0.0048 0.0050 0.0047 0.0049 

Slovakia 0.0414 0.0275 0.0491 0.0486 0.0437 0.0462 0.0456 0.0437 

United 

Kingdom 

1.1958 1.2804 1.1772 1.2857 1.2347 1.3615 1.4209 1.3674 

Total 13.4438 16.0453 14.0191 15.0032 15.2705 16.6222 17.3131 16.6771 

Total (FRA. 

GER. 

10.8216 12.4601 11.0943 11.7027 10.3118 10.9308 10.9847 10.6188 
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ITA.POL.SP

A, UK) 

% 

contribution  

(FRA. GER. 

ITA.POL.SP

A, UK)  

80.4953 77.6557 79.1371 78.0016 67.5277 65.7600 63.4474 63.6729 

 

 

 

 

 

Figure 65: Bar plots illustrating the total CH4 budget of European countries for the first eight 
months of 2018, derived from CIF-FLEXPART inversion. 

 

3.11 WRF-CTDAS inversion system development (DLR and VUA) 

The inversion system WRF-CTDAS was originally developed in the H2020 projects SCARBO 
and CHE (see https://che-project.eu/node/239). It is a coupling of the transport model WRF-
GHG (Beck et al., 2011) to the Carbon Cycle Data Assimilation Shell (CTDAS; van der Laan-
Luijkx et al., 2017). The optimization in CTDAS is carried out using an Ensemble Kalman 
Smoother (Peters et al., 2005). The work plan included inversions focusing on Germany (DLR) 
and Europe (VUA), as well the implementation of features for improving performance. Initially 
it had been foreseen to carry out the inversions focussing on Germany (DLR) with a coupling 
of WRF-GHG to the Common Inversion Framework, which was carried out in WP5. However, 
the development with the CIF team was delayed, and instead CTDAS-WRF was used as a 
fall-back option. We successfully implemented the new features, but due to personnel 
shortage, the full inversions for Germany (DLR) were not realised according to the protocol. 
Instead, we demonstrate the inverse model's new capabilities with a numerically small test 
case. Inversions for Europe have been carried out; however, they were affected by a bug that 
was discovered too late to rerun the VUA simulations. In the following sections, we first 
describe the model development (Section 3.11.1), followed by a description of model and 
results for the test case (DLR) to demonstrate the new capabilities (Sections 3.11.2 and 

https://che-project.eu/node/239
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3.11.3), and model description and results of the European simulation centered on the 
Netherlands (VUA) that demonstrate the application in a setup adhering to the inversion 
protocol, albeit suffering from the aforementioned bug (Sections 3.11.4 and 3.11.5). 

3.11.1 Inverse model development 

At the start of CoCO2, WRF-CTDAS could assimilate column data and optimize small state 
vectors without correlations, e.g. estimate emissions for a few aggregated regions. This 
approach is prone to aggregation error. During CoCO2, we added the capability to optimize 
fluxes at high spatial resolution and to assimilate in situ data. The support for in situ data was 
originally written by Ioanna Evangelou (University of Crete) and Nikos Gialesakis (University 
of Crete and University of Bremen), and within CoCO2, we debugged and integrated it into 
the current WRF-CTDAS code. To support flux optimization at high spatial resolution, we 
added two capabilities to WRF-CTDAS: allowing prior flux covariances and replacing the 
existing localization algorithm with a computationally efficient one. These features were 
implemented in collaboration with Tzu-Hsin (David) Ho (MPI-BGC, Jena). Localization is an 
error prevention method for Ensemble Kalman Filters: since the state vector and its 
covariances are represented by a finite ensemble, spurious correlations can cause unphysical 
optimizations and thus degrade the estimated fluxes. The standard localization method in 
CTDAS is based on a t-test. We found that this approach is computationally not feasible for 
large state vectors and implemented an alternative localization method based on the distance 
between the observation and the state vector element location, drastically reducing 
computational time. 

3.11.2 Model description (DLR test case) 

To demonstrate the new capabilities that we integrated into WRF-CTDAS within CoCO2, we 
ran a test case in which we assimilated data from the ICOS network to estimate fluxes with 
prior spatial flux correlations. The configuration is described in the following sections. 

3.11.2.1 Transport model 

Here, we use the transport model WRF-GHG version 4.3.3. The domain of the test case 
covers portions of southern Europe in 12x15 grid cells with a resolution of 100 km, 39 vertical 
levels and a time step of 10 minutes. This configuration is designed to allow fast runs of the 
transport model instead of optimizing accuracy. The model is driven by meteorological fields 
from ERA5 (Hersbach et al. 2017, 2023a). Atmospheric transport is computed for an ensemble 
of 150 passive tracers. 

3.11.2.2 Prior fluxes and assimilated observations 

In this test case, we optimize CO2 emissions. Prior fluxes are comprised of 3 datasets: 
anthropogenic emissions, gross primary production (GPP) and respiration. Anthropogenic 
emissions are taken from the TNO GHGco dataset (Super et al., 2020), with a resolution of 
1/60 x 1/120°. GPP and respiration are from a run of the model VPRM, originally produced in 
the H2020 project CHE (https://www.che-project.eu/node/149), with a resolution of 5 km. 
These datasets have then been projected onto the WRF domain (Figure 66). 
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Figure 66: Prior emissions for the WRF-CTDAS test case and locations of stations from which 
data are assimilated. Shown here are values for 2015-06-01 12 UTC. 

 

Assimilated observations are from the ICOS network at the following locations: 

 

Table 16: ICOS station locations from which data were assimilated 

Station code Station name 

BRM Beromunster 

CMN Monte Cimone 

ERS Ersa 

HPB Hohenpeissenberg 

IPR Ispra 

JFJ Jungfraujoch 

LHW Laegern-Hochwacht 

OHP Observatoire de Haute Provence 

PDM Pic du Midi 

PRS Plateau Rosa 

PUY Puy de Dôme 

SSL Schauinsland 

TRN Trainou 

ZSF Zugspitze 

 

 

3.11.2.3 State vector 

The state vector consists of scaling factors for the three prior flux components at the same 
extent and resolution as the transport simulation grid, i.e. 12x15 grid cells at 100 km resolution. 
In addition, one boundary condition offset per corner is optimized, for a total of 544 state vector 
elements (3*12*15 + 4=544). 
Prior uncertainties are 30% for anthropogenic emissions, 50% for GPP and respiration and 5 
ppm for boundary conditions. Prior correlations of flux scaling factors are Gaussian with 400 
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km correlation length and 0.25 for the boundary condition offsets. The temporal resolution is 
1 day with an assimilation window of 2 days. 
 

3.11.2.4 Period of study 

The test case inversion is run for 2 days, 1-2 June 2015. 

3.11.3 Results (DLR test case) 

Figure 67 shows prior and posterior fluxes as well as their difference, i.e. the innovation. As 
expected, the innovation is concentrated around the station locations, as is the uncertainty 
reduction (Figure 68). The uncertainty reduction of the anthropogenic flux component is much 
smaller than that of GPP and respiration. 

 

Figure 67: Prior, posterior and innovation fluxes for 2015-06-01 12 UTC. 

 

 

Figure 68: Uncertainty reduction for 2015-06-01 
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At a late stage of the project, we discovered a bug in the newly implemented spatial localisation 
code. The bug led to an incorrect mapping of localisation coefficients, which erroneously 
suppressed some state vector optimizations and erroneously allowed others, potential 
spurious ones (i.e. far from the stations). In Figure 67  and Figure 68, the bug has been 
corrected. However, it was too late to rerun the inversions by VUA (Section 3.11.5). Effectively, 
the error led to only partially optimized flux maps (cf. Figure 68 vs Figure 70). To illustrate the 
effect of the bug, below are plots of the test case while the bug was still present (Figure 69 
and Figure 70). In this case, the uncertainty reductions are not related to the station locations 
and have a stripe pattern. For pixels whose uncertainty is still reduced, the posterior fluxes 
and innovation are similar to the ones of the debugged fluxes (cf. Fig. Figure 67 vs Figure 69). 
However, for pixels whose uncertainty was erroneously not reduced, the posterior fluxes are 
close to the priors. 

 

Figure 69: Same as Figure 67, but with the bug that also affected the results in Section 3.11.5 

 

 

Figure 70: Same as Figure 68, but with the bug that also affected the results in Section 3.11.5 
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3.11.4 Model description (VUA Europe case) 

3.11.4.1 Transport model 

WRF v.4.4.1 is used in this study, coupled with chemistry (WRF-Chem) (Skamarock et al. 
2019). It is a fully coupled, online meteorological and chemical transport mesoscale model 
(Grell et al. 2005). The greenhouse gases (GHG) module is used to calculate CO2 transport 
(Beck et al., 2011). All other atmospheric chemistry options are switched off, as they are not 
needed for the long-lived trace gas CO2, while state of art schemes are used for simulating 
atmospheric transport. The model is run over Europe using two domains (see Figure 71), 
where the parent domain (d01) covers almost all of Europe with a horizontal resolution of 30 
km x 30 km, and the nested domain (d02), with a horizontal resolution 10 km x 10 km, partially 
covers Western Europe. The boundary and initial conditions are derived from CAMS for CO2 

and from ECMWF Reanalysis v5 (ERA5) for the meteorological data (Hersbach et al., 2023 a, 
b). 100 ensemble members and a total of 50 vertical levels are used, with approximately 12 
vertical levels below the boundary layer, and spectral nudging for d01 and d02 is applied. 
WRF-Chem temperature, wind and humidity are nudged at each dynamical step toward the 
reanalysis and are updated every 3h above the atmospheric boundary layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71: WRF-Chem domains over Europe. The red dots indicate the locations of the in-situ 
sites used for the inversions. 

3.11.4.2 Prior fluxes and assimilated observations 

As part of the simulations all available prior CO2 fluxes from the task protocol are used; namely 
anthropogenic from TNO, biogenic from VPRM, fire from GFAS, oceanic from Mercator and 
lateral from LSCE. However, only anthropogenic, biogenic (respiration and gross primary 
production) and fire CO2 fluxes are optimised, while the rest of the fluxes fixed in the 
simulations. The table below (Table 17) provides a summary of the different prior fluxes, as 
well as with their uncertainties applied in this study. 
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Table 17: CO2 prior fluxes and the uncertainties used in this simulation. 

Prior Fluxes Resolution Prior Uncertainties Courtesy 

Anthropogenic 6x6km 30% TNO, Hugo Denier 
van der Gon 

Biogenic (respiration 
& gross primary 

productivity) 

1x1km 50% VPRM, Julia Marshall 

Fire 0.1x0.1 50% GFAS, Copernicus 

Oceanic 0.25x0.25 not optimised Cyril Germineaud, 
Mercator 

Lateral 8x8km not optimised LSCE 
(CEA/CNRS/UVSQ) - 

IPSL 

 

Table 18 shows the in-situ observations used in this study and they mostly cover western and 
northern Europe. Normal stations are filtered for afternoon data and mountain stations for night 
time data, due to uncertainties on the simulation of the planetary boundary layer height.  

The observational data were downloaded from the ICOS Carbon Portal. (Couret and  Schmidt, 
2023). 

 

3.11.4.1 State vector 

The CO2 fluxes are optimised (see Table 17) using the cost function (J) as it is described in 
van der Laan-Luijkx et al. 2017.  

 

 

 

Table 19 summarises the CTDAS configuration. 

In total, 6224 flux parameters are optimised, splitting the domain into 1554 flux regions. Also 
8 boundary condition parameters are optimised, with a sigma equal to 6 ppm for boundary 
condition optimisation. Finally, the correlation for neighbouring boundary condition parameters 
is set to 0.25. 

3.11.4.1 Period of study 

The model is run from 15th January to 28th February 2018, covering the full month of February 
2018 (one of the two reference months in Task T4.4). The first two weeks are considered as 
spin-up and are excluded from the analysis. 

 

 
 

 

 

 

 

https://data.icos-cp.eu/portal/#%7B%22filterCategories%22%3A%7B%22project%22%3A%5B%22icos%22%2C%22euroObspack%22%5D%2C%22level%22%3A%5B1%2C2%5D%2C%22stationclass%22%3A%5B%22ICOS%22%5D%7D%7D
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Table 18: Information about the in-situ ICOS sites used for the inversion. X indicates if a station 
is a mountain station. 

Station Name and inlet height (m) Mountain station 

Beromunster_212  

Bialystok_300  

Cabauw_207  

Carnsore Point_14  

El Estrecho_20  

Ersa_40  

Gartow_341  

Heidelberg_30  

Hohenpeissenberg_131 X 

Hyltemossa_150  

Hyytiälä_125  

Ispra_100  

Järvselja_110  

Jungfraujoch_5 X 

Karlsruhe_200  

Kresin u Pacova_250  

La Muela_80  

Laegern-Hochwacht_32  

Lindenberg_98  

Lutjewad_60  

Mace Head_24  

Malin Head_47  

Monte Cimone_8 X 

Norunda_100  

Observatoire de Haute Provence_100  

Observatoire perenne de 
l'environnement_120 

 

Pallas_12  

Pic du Midi_28 X 

Plateau Rosa_10 X 

Puijo_47  

Puy de Dome_10 X 

Saclay_100  

Sierra de Grazalema_20  

Svartberget_150 X 

Trainou_180  

Utö - Baltic sea_57  

Zugspitze_3 X 
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Table 19: CTDAS configuration 

Temporal 

resolution 

Assimilation 

window 

Correlation 

length 

State vector 

resolution 

Spatial 

correlations 

Scaling 

factor 

1 week 2 weeks 300km 100km Yes Separate 

for prior 

fluxes 

 

3.11.5 Results (VUA Europe case) 

One inversion is carried out in this study. The result section is split into two subsections. The 
first subsection presents the results over Europe while in the second the analysis is focused 
on the western Europe. 

3.11.5.1 CO2 inversion: Europe 

Figure 72 shows prior and posterior anthropogenic and biogenic (respiration and gross primary 
production) CO2 fluxes over Europe (d01), as well as the differences between posterior and 
prior for February 2018. The “stripe” patterns shown in Figure 72, for example in the 
differences between posterior and prior biogenic fluxes, is due to an error in the spatial 
localization code, meaning that some regions close to the observations are not optimised (for 
details see Section 3.11.3).  
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Figure 72: Upper panel: Average CO2 anthropogenic fluxes. Lower panel: Average CO2 
biogenic fluxes, over Europe (d01) for February 2018. From left to right: Prior, posterior fluxes 
and the difference between posterior and prior. The grey dots indicate the in-situ observations 

used for the inversions. 

 

Figure 73 shows the country-scaled prior and posterior anthropogenic and biogenic CO2 fluxes 
averaged for February 2018 and for all the countries included in the domain. 
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Figure 73: Averaged prior and posterior anthropogenic (in red) and biogenic fluxes (in green) 
for February 2018 and for the different countries included in the simulation domain (d01). 

3.11.5.2 CO2 inversion: Zoom in Western Europe 

The Figure 74 shows prior and posterior anthropogenic and biogenic (respiration and gross 
primary production) CO2 fluxes over western Europe (d02), as well as the differences between 
posterior and prior for February 2018. 
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Figure 74: Upper panel: Average CO2 anthropogenic fluxes. Lower panel: Average CO2 
biogenic fluxes, over western Europe (d02) and for February 2018. From left to right: Prior, 

posterior fluxes and the difference between posterior and prior. The grey dots indicate the in-
situ observations used for the inversions. 

 

Figure 75 shows country-scaled posterior anthropogenic and biogenic CO2 fluxes for all the 
countries included in the domain. 
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Figure 75:  Averaged prior and posterior anthropogenic (in red) and biogenic fluxes (in green) 
for February 2018 and for the different countries included in the simulation domain (d02). 

 

4 Synthesis and conclusions 

Task 4.4 and this deliverable represent a major inverse modelling activity with the 
development of national-scale inverse modelling systems and their application over periods 
ranging from one month to several years. This offers a strong basis for the assessment of 
national-scale inversions. In order to tackle the national-scale targets of the task, the 
participants had to develop new capabilities or expand existing systems to enable: 

• the separate control of the natural and anthropogenic CO2 fluxes, which is innovative, 

since previous CO2 regional inversion configurations generally fixed the anthropogenic 

emissions and focused on controlling the biogenic CO2 fluxes 

• the assimilation of satellite data (in addition to in situ data) at regional scale. While such 

data have been used in global and local scale inversions for some years, their use for 
regional-scale inversions has emerged more recently 

• the (co-)assimilation of in situ and satellite observation of species co-emitted with CO2 

during fossil fuel combustion (CO and NOx) 

• the modelling of the transport and the control of the fluxes at horizontal resolutions down 

to 10 km; continental to national-scale inverse modelling configurations were often based 
on coarser resolutions, notably 0.5° resolution for European-scale inversions 

 
The different systems use different data assimilation techniques (specifically implementations 
of variational, Ensemble Kalman Filter and analytical approaches), strategies for the definition 
of the control vector (with varying temporal, spatial and/or sectoral resolutions), statistics of 
the uncertainties in the prior estimate of the fluxes, statistics of the observation and model 
errors, types of transport models, data selection, and components of the prior and fixed flux 
datasets (in practice, even though the main flux components were taken from the common 
database established with the T4.4 protocol). Some of them cover all of Europe (or the USA 
in the case of one system), others have domains focused on one or a few countries, with 
spatial resolutions ranging from 0.5° to 5 km for the transport, and from 0.5° to 10 km for the 
inversion.  
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Therefore, this deliverable provides good insights on the variety of the current options and 
practices for regional and national-scale flux estimation. The heterogeneity of approaches 
makes it difficult to attribute differences amongst the results from the different systems to 
specific characteristics of the inverse modelling setup. However, despite these differences, 
many of the systems provide consistent insights regarding the key aims of this deliverable, as 
detailed below. An in-depth quantitative inter-comparison of such a large number of inversions 
would have been too ambitious in the frame of a single project task, especially since the time 
required for the system development delayed the delivery of many of the inversion results to 
the last months of the project. The results demonstrate the need for a systematic analysis of 
the impact of the different inverse modelling components and design choices as initiated in 
Tasks 5.3 and 5.6, requiring extensive ensemble analysis with modular inverse modelling 
platforms such as the Community Inversion Framework (CIF; see D5.3). The results from the 
different inversion systems are now available for further analysis beyond Task 4.4 of CoCO2. 

The following discusses the major insights from the set of inversions in D4.6. 

 

The lack of control of the CO2 anthropogenic emissions at the annual to monthly / 
national scale 

This main highlight from D4.6 is supported by the results from five (CIF-CHIMERE, ICON-ART 
CTDAS, WRF-analytical, WRF-CTDAS and GEOS-CHEM EnKF) out of six of the CO2 
inversion systems using real data. (The seventh CO2 inversion system, i.e., TRACE EnKF, is 
only used for OSSEs without a separate control of the anthropogenic and natural CO2 fluxes). 
This major conclusion applies in inversions assimilating the existing surface data, satellite data 
or both surface and satellite data. Only the biofos inversions with the LUMIA system apply 
major corrections to the CO2 anthropogenic emissions, but these corrections appear to be 
unrealistic, and are attributed to the lack of robust statistical characterization of the respective 
uncertainties in the anthropogenic emissions and natural fluxes (see Section 3.6).  

The current capabilities of the use of the co-emitted species do not enhance significantly the 
potential to monitor the CO2 anthropogenic emissions at large spatial and temporal scales 
despite promising initial steps towards their co-assimilation. Actually, the use of the co-emitted 
species, and their co-assimilation bring new dimensions of uncertainties associated with the 
chemistry modelling to the already large uncertainties in the current satellite CO and NO2 
observations and the emission ratios across species (see Sections 3.2 and 3.9).  

One might assume that the lack of correction of the CO2 anthropogenic emissions by the 
inversions is due to the high accuracy of the inventories used as prior estimates of these 
emissions at annual and national scales in Europe. However, the lack of correction also 
applies at the monthly scale and at sub-national scales over most of the territories of the 
European countries, despite the significant uncertainties in the spatial and temporal 
disaggregation of the emissions at such scales. 

However, systems such as CIF-CHIMERE, ICON-ART-CTDAS and GEOS-CHEM show some 
local control of the CO2 anthropogenic emissions (see Sections 3.2, 3.3 and 3.9), and some 
sensitivity of the results for the NEE to the local anthropogenic emissions (see Section 3.2.2), 
especially in the areas with the largest local sources, in northwest Germany and Benelux, and 
especially when the transport model resolution is fine (at 5 to 10 km resolution, see Section 
3.5.2). This implies that the capability to monitor national-scale CO2 anthropogenic relies on 
exhaustively covering the local CO2 anthropogenic sources. The current inverse modelling 
approach lacks the capability to exploit large scale variations in the observations (at least 
when using the existing observation systems) for the derivation of anthropogenic emissions 
estimates since the signal from the natural fluxes dominates over such scales. This still applies 
when analyzing the observations at 10 km resolution, which motivates the use of transport 
models at finer resolution, able to simulate the plumes from individual sources or clusters of 
sources, and for inverting the emissions at finer resolution, such as when tackling local scale 
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inversions. It also motivates the use of observations strongly connected to specific local 
sources in the national-scale inversion systems, such as those from urban/peri-urban stations 
dedicated to a given urban area. The ICOS stations that have been used throughout the 
simulations reported here were not planned with a focus on anthropogenic emission 
monitoring, which may contribute to the difficulty of controlling these fluxes using these data. 
Further observational constraint on local sources should come through the exploitation of 
observed plumes in spaceborne data, such as CO2M. 

Ultimately, this requires a strong coupling between national and local inversions, the former 
relying much on the latter for the quantification of the CO2 anthropogenic emissions. In parallel 
we need to progress on the inversions of co-emitted species and on their co-assimilation. 

Analysis at high resolution over national domains is challenging: the accurate description of 
the statistics of uncertainties in the prior inventories of the emissions becomes more 
challenging when the spatial resolution increases, due to the heterogeneity of the emissions. 
This adds to the need for improved characterization of the correlations across the prior 
uncertainties in the emissions of the different co-emitted species when tackling the co-
assimilation of co-emitted species. 

The situation is different for the CH4 emissions since the anthropogenic emissions are not 
known a priori as well as in case of CO2, and since the anthropogenic and natural CH4 
emissions have more balanced and distinct spatial distributions and atmospheric signature. 
Therefore, the CH4 inversions demonstrate some capabilities to infer these two types of 
emissions separately even at annual and national scale. 

The current uncertainties the inversion of the CO2 terrestrial ecosystem fluxes and CH4 
emissions 

The second major highlight from the set of inversions conducted in T4.4 is the large spread of 
the CO2 NEE and CH4 emission estimates across the inversions.  

Despite using the same or similar prior estimates of the NEE, the ICON-ART CTDAS CO2 
inversions, the CIF-CHIMERE CO2 reference inversions, the LUMIA “bio” inversion and the 
GEOS-CHEM EnKF CO2 inversions provide annual NEE budgets for France in 2018 ranging 
from -537MtCO2/yr to -135MtCO2/yr (the LUMIA biofos inversion yielding a net source of 35 
MtCO2/yr). Most of these inversions tend to reduce the likely too large sinks modelled by 
VPRM. However, the results vary not only across the inversion systems, but also within a 
given system when using the surface data, the satellite data or both. The sole convergence of 
the results is shown with the tests of sensitivity to the prior estimates of the fluxes with the 
CIF-CHIMERE system: with a given observation dataset and several prior estimates of NEE, 
the spread of the inversion results tends to be smaller than that of the prior estimates (see 
Section 3.2.2.2). As also highlighted by the results in Task 5.6, the situation is similar for the 
CH4 inversions but here, none of the CH4 inversion assimilates satellite data and only two of 
them provide annual emissions.   

This reveals that despite the use of finer resolution systems here than in previous inter-
comparisons (such as in EUROCOM, Monteil et al., 2020 and Thompson et al., 2020 or 
VERIFY, McGrath et al., 2023), and despite the regular progress in the inversion codes and 
configurations, the uncertainties in the regional-scale inversion of the CO2 natural fluxes or of 
the CH4 emissions remains high. The inter-comparison of the national scale inversions here 
continues the efforts conducted in these past projects and in WP5 (Tasks 5.3 and 5.6). 

The relative weight of the satellite OCO-2 data and surface data for the CO2 inversions highly 
depends on the inversion systems and configurations. While, overall, the weight of the surface 
data appears to be larger than that of the satellite data in the CIF-CHIMERE reference 
inversions, and while the joint assimilation of the two types of datasets does not alter the fit to 
each dataset in these inversions, it is the opposite for the ICON-ART CTDAS CO2 inversions. 
Some patterns of the ICON-ART CTDAS inversions are very different when using the satellite 
data or the surface data, which reveals some biases between the information from the 
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assimilation of these two datasets (see Section 3.3.2). The regional-scale assimilation of the 
satellite data being more recent than that of the surface data, the configurations of the 
inversions to tackle these data tend to be less robust than those when assimilating surface 
data, which benefited from much experience from past studies. There is probably a need to 
progress on the assimilation of satellite XCO2 data in regional systems before more consistent 
and complementary results from the two datasets and improved co-assimilation of the satellite 
and surface data can be realised. 

The insights brought by this deliverable for the development of the CO2MVS multi-scale 
inversion configuration, and how they can serve as a basis for the development of national 
operational systems is discussed further in Deliverable 4.8.  
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