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Figures 
 
Figure 1: Accuracy vs. number of the instant estimates of emissions from cities and power 

plants when applying the light plume inversion methods of T4.2 to XCO2 and NO2 cloud-
filtered images and using ERA5 winds. The number of estimates and accuracy vary with 
the applied uncertainty threshold. A stricter threshold results in a lower number of 
estimates but usually in improved accuracy per estimate. The filled areas represent the 
inter-quartile ranges of the distributions of the relative absolute deviations between the 
estimates and the actual emissions. Note that the relative absolute deviations of the 
CSF, GP and LCSF methods are characterized by IQRs whose first/third quartiles are at 
most equal to ~20 %/~60 %. The 90th percentiles of the distributions are shown in the 
inset (fig. included in Santaren et al., 2023; update of the results documented in D4.4).
 ........................................................................................................................................ 12 

Figure 2: density plots of the absolute value of errors (relative to the true emissions of not) 
between the predicted and the true Lippendorf (top) and Turow (bottom) instant 
emissions (corresponding to satellite overpasses). Four sets of predictions are 
considered, corresponding to three CNN models with three different sets of inputs and 
the CSF method. Each CNN model is trained with the XCO2 field and the winds field re-
analysis as inputs. Two of the models additionally assimilate the NO2 field or the 
predictions of the CNN-based segmentation model (for the plume detection). Predictions 
with relative errors greater (in absolute value) than 150% or absolute values of errors 
greater than 30 Mt/yr were set to 150% or 30 Mt/yr to increase the visibility in the figure. 
Figure from Dumont Le Brazidec et al., 2023b. .............................................................. 16 

Figure 3: schematic of a potential strategy to split the operational process of the satellite 
XCO2 observations between a specific branch dedicated to local inversions of plumes, 
and the main multi-scale global inversion framework ..................................................... 19 

Figure 4: Schematic of the multi-scale approach for the integrated global IFS inversion 
system. The IFS global inversion system provides boundary conditions to the regional 
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those systems are in turn assimilated as observations into the global IFS model, 
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1 Executive Summary 
The deliverable provides a synthesis of the lessons learned from the activities in CoCO2 WP4. 
It provides a review of the conclusions from the previous deliverables D4.1-7 in this work 
package as well as new conclusions from the analysis in tasks T4.1-4. The main conclusions 
lead to recommendations and guidance regarding the spatial resolution of the atmospheric 
transport modelling and inversion and the observations to tackle the monitoring of the CO2 
anthropogenic emissions, the development of specific branch of local scale inversion based 
on computationally light data driven methods for the operational process of the XCO2 
spaceborne images of plumes downwind of emission hotspots, the coupling of such a branch 
with the CO2MVS multi-scale inversion prototype, the development of machine learning 
techniques for the local scale inversions, and regarding the benchmarking and inter-
comparison of inverse modelling configuration at local and national scale, including the use of 
modular open source community codes. Further analysis and inter-comparisons with more 
complex synthetic tests cases or experiments using real data will be needed to refine the 
configuration assessment of the local scale inversion techniques based on lightweight 
techniques or machine learning, but the experiments in WP4 already provide strong insights 
on their strengths and accuracy, and on their level of readiness for operational applications. 
Large (national) scale inversions of anthropogenic CO2 emissions keep on being more 
exploratory, and may finally have to connect to local scale inversions via the coupling of 
systems or scales within the multi-scale inversion prototype, or via the gradual increase in the 
spatial resolution of the national scale systems.  
 

2 Introduction 
2.1 Background 

The CoCO2 project aims to develop a multi-scale inverse modelling prototype for the future 
CO2 emission Monitoring and Verification Support Capacity (CO2MVS). Such a prototype will 
require proven and standard modelling and inversion techniques and configurations at the 
different spatial scales that are relevant for the global monitoring of anthropogenic CO2 
emissions. In this context, the CoCO2 work package 4 (WP4) developed and tested methods 
and systems to monitor the anthropogenic CO2 emissions at national to facility/city scale. The 
first three tasks of WP4 (T4.1, T4.2 and T4.3) were dedicated to modelling and inversion 
strategies at the local scale. A wide range of models and methods were implemented and 
analysed with respect to their capabilities to simulate the plumes from large sources (cities, 
industrial sites), to detect such plumes in satellite XCO2 images such as those from the future 
CO2M mission, and to quantify the sources. The fourth task (T4.4) was dedicated to national 
scale inversion systems, aiming to assess the optimal configurations (inversion parameters, 
type of input products, observation datasets etc.) and the potential of CO2M for the 
quantification of national to sub-national CO2 and CH4 anthropogenic emissions and natural 
fluxes. These different tasks were designed to demonstrate the capabilities of various 
implementations of local and national scale systems and to benchmark them separately at the 
local and national scales.  
There was a subsequent need to synthesize the expertise and lessons learned from these 
tasks, to connect those from the local- and national-scale activities and to take advantage of 
this synthesized knowledge for the development of the global multi-scale inverse modelling 
prototype. This was covered by task 5 in WP4 (T4.5), corresponding to this deliverable D4.8. 
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2.2 Scope of this deliverable 
2.2.1 Objectives of this deliverables 

The aims of this final deliverable of WP4 are  

• to synthesize the lessons learned from T4.1-T4.4 regarding the capabilities of the 
future CO2MVS operational system to monitor hot spot (urban, industrial) emissions 
and national to sub-national emission budgets 

• to provide guidance for benchmarking of local and national scale inversion approaches 
and systems 

• to synthesize the lessons learned from T4.1-T4.4 regarding the optimal strategies for 
local and national scale inversions  

• to provide guidance for the integration of these strategies into the global multi-scale 
integrated prototype of the future operational CO2MVS developed in WP6  

• to confront the results and conclusions from local and national scale inversions and to 
provide insights in how to build connections between local and national scale systems 
and between the multi-scale prototype and independently developed national systems 

2.2.2 Work performed in this deliverable 
This deliverable mainly consists of a synthesis of the different deliverables from tasks T4.1-
T4.4, but also includes insights from WP5. This synthesis provides recommendations and 
guidance for the development of the multi-scale inversion prototype. Regarding these aspects, 
new specific discussions and conclusions are derived from the WP4 studies that have been 
documented in deliverables D4.1-7.  
Furthermore, some of the developments and tests in tasks T4.1-4 have been extended and 
improved in T4.5 to strengthen the conclusions in this final deliverable. 

2.2.3 Deviations and counter measures 
This deliverable inherits deviations from other deliverables due to staffing problems and due 
to the lack of suitable input data or results. Some of the delayed activities of Tasks T4.1 to 
T4.4 were planned to be resumed in T4.5 to provide additional inputs for this synthesis. 
However, as detailed in the following, time was ultimately too short to complete these activities 
despite significant efforts.  
One of the objectives of T4.4 was to assess the potential of CO2M for national-scale inversions 
of the CO2 anthropogenic emissions based on Observing System Simulation Experiments 
(OSSEs). This objective could not be fulfilled because the required synthetic CO2M data, 
generated in T5.4 of WP5, were provided too late to be incorporated by the national-scale 
inverse modelling teams. Therefore, the assessment of the potential of CO2M at national scale 
provided in this synthesis is only based on results obtained in T4.4 with real observations from 
the current observation network. 
A second delayed activity was to conduct specific experiments with two nested systems 
coupling national (from T4.4) and city scale (from T4.3) inversions to provide insights into the 
optimal coupling between these scales. However, the full configuration of these systems was 
not ready early enough to enable a proper analysis in the frame of T4.5. Alternatively, we 
expected some insights from the assimilation of the local and national scale Monte Carlo 
inversion estimates (generated in WP4 and delivered to WP6 in the frame of D4.7) in the multi-
scale inversion prototype of WP6 to feed the topic of the reconciliation between local and 
national scale analysis. However, the assimilation of local and national scale inversion 
products in the multi-scale inversion prototype is still in the testing phase. 
The question of how to optimally couple local and national scales can thus not be answered 
in this report, which instead focusses on discussing the complementarity between local and 
national-scale inversions. This is not only because of a lack of results from WP4, but also due 
to limitations in the current observing system. Indeed, there is (1) a lack of transects of plumes 
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from CO2 emissions hotspots in existing satellite observations of total column CO2 (XCO2) 
from OCO-2/3 over Europe (see D6.5 in WP6), (2) a lack of CO2 stations suitable for the 
estimation of urban CO2 emissions, and (3) a lack of control of anthropogenic CO2 emissions 
at the national scale even in Europe despite its comparatively dense network of in-situ stations 
(as demonstrated by the inversions in T4.4 which were focused on this continent). This 
limitation made it impossible to compare the results from the local and national scale 
inversions using real observations, and to identify optimal configurations or coupling strategies 
to increase the consistency between the local and regional estimates. 
 

3 Synthesis from the local scale activities in T4.1-T4.3 
The activities dedicated to local scale modelling and inversions were split into three tasks: 
T4.1 focused on the local scale modelling of CO2 and NOx plumes from cities and power plants, 
T4.2 focused on the use of light-weight data driven techniques for the detection and inversion 
of XCO2 and NO2 plumes in satellite observations, and T4.3 was dedicated to the development 
of approaches exploiting the information from high-resolution atmospheric transport models 
for the detection and inversion of XCO2 and NO2 plumes in satellite images. 

3.1 Conclusions from plume modelling activities (T4.1) 
Task 4.1 consisted of a CO2 and NOx/NO2 simulation intercomparison for seven cases of 
strong point sources. The aim of this task was to assess the performance of current high-
resolution transport models, identify critical elements affecting the simulations, and develop 
recommendations for the optimal simulation of the plumes. The task also aimed to build a 
library of plumes for method development and benchmarking.  A modelling protocol was 
established in the frame of D4.1 and refined in the frame of D4.2 (see the appendix of D4.2). 
The protocol ensured that differences between the simulation outputs were only due to (1) the 
model used to simulate the atmospheric transport, and (2) the horizontal resolution of the 
model. Five models were considered (COSMO-GHG at 1.1 km horizontal resolution, ICON-
ART at 2 & 6 km, LOTOS-EUROS at 1 km, MicroHH at 100 m, WRF-CHEM at 1 km). 

To assess the performance of the models, we compared them to in-situ data. The best fits 
between the simulated and observational data were obtained with MicroHH at 100 m 
horizontal resolution, reproducing both the "width" and "amplitude" of observed plumes very 
closely. With degrading resolution, the fit becomes worse as both the “width” (spreading out 
more) and “amplitude” (decreasing) of the plume is captured less well. We also compared the 
models to remotely sensed data (including TROPOMI NO2 data) but we only made a 
qualitative assessment based on this comparison, namely, that all models did a reasonable 
simulation of the plume properties as visible in the remotely sensed data. 

The critical elements affecting the simulations depend on the modelling targets. The MicroHH 
set-up was the only one which was sufficiently close to matching the in-situ data. However, 
the resolution required to generate realistic synthetic CO2M observations (e.g. for inversion 
OSSEs) can be slightly coarser than that of MicroHH. All models at 2 km or finer resolution 
appeared to generate similar types of plumes in CO2M images. The use of high-resolution 
models did not seem to be required for such simulations owing to the 2 km spatial resolution 
of CO2M. 

The recommendations from this study emphasized that model spatial resolution (the finer 
resolution, the better the fit to the observations), atmospheric boundary layer development 
(the better the model simulates the true atmospheric boundary layer development or thus 
numerically reproduces meteorology, the better the fit to the observations) and chemistry 
scheme were the major contributors to the simulation (in)accuracy. As mentioned in the 
previous paragraph, the recommendations depend on the modelling target. A very high-
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resolution large eddy simulation (LES) model with a full chemistry scheme (like MicroHH) is 
required to simulate in-situ data of reactive trace gases. Our qualitative approach suggests 
that the 2 km atmospheric models driven by an accurate meteorological scheme (like the 
'online' COSMO-GHG, ICON-ART, WRF-CHEM models; as well as the LOTOS-EUROS 
'offline' model) can simulate 2-km column-averaged XCO2 data sufficiently well. 

In the frame of D4.8, we want to bring some nuance to the above conclusions from D4.2: 

• Our approach here was qualitative rather than quantitative. A remaining question was 
why the MicroHH plumes remained more elevated over the background (i.e., more 
concentrated and less dispersive) than the plumes from the other models, even when 
sampled to synthetic CO2M pixels. One possible reason for this is that plume rise was 
accounted for in a simplified way by simulating power plant stacks as point sources in 
horizontal space with altitude-varying profiles. For coarse models, this led to (too) fast 
initial mixing, since emissions from a point source are immediately spread over the 
size of a grid box. For high-resolution models like MicroHH, however, this led to too 
little mixing and thus the plume remained more concentrated compared to 
observations close to the point source. Resuming the activities from T4.1, the MicroHH 
developers (Krol et al., 2023) have made changes to their code since the delivery of 
D4.2 to allow plume rise to be simulated explicitly within their model, which led to a 
more realistic dispersion of the trace gases close to the point source. This approach 
can also account for a possible lifting of the top of the atmospheric boundary layer by 
the rising plume. This presents an interesting avenue for further research. 

• The models used for Numerical weather prediction (NWP, i.e., COSMO, ICON-ART 
and WRF at 1 or 2 km horizontal resolution and with the corresponding tracer transport 
modules), and the LES model (at 100 m horizontal resolution) showed similar, but not 
identical performance to simulate 2 km x 2 km CO2M pixel data. The current 
suggestion is that the mesoscale NWP models likely perform well enough, and thus 
that high resolution LES models are likely not needed, but a more quantitative 
approach to confirm this could be valuable. A new study is suggested, assessing 
whether the simulated MicroHH plumes fit well with remotely sensed total-column data 
at long distances, in addition to fitting well with the in-situ data recorded relatively close 
to power plant stacks. 

• The library of plumes developed in T4.1 (https://zenodo.org/records/7448144) 
gathers relatively simplified total column images with no systematic errors and other 
issues that may impact the accuracy of actual CO2M images. In other words, the 
training of emission estimation methods on this library of plumes (e.g., the fine-tuning 
of direct estimation methods, or the training of neural networks based on the 
corresponding pseudo-images) may not be sufficient to tackle the CO2M data that will 
eventually be recorded. It is currently beyond the state-of-the-art to compute realistic 
synthetic CO2M data for such a purpose, mainly due to missing knowledge on the 
systematic error patterns that one may expect in reality. 

• The downwind profiles of NO2:CO2 (or NOx:CO2) ratios was highly variable across the 
models. These profiles are not just a function of how the chemistry module is 
implemented in the models (e.g., full chemistry versus exponentially decaying 
functions for the simulation of NOx). They are also a function of the model spatial 
resolution. As the reaction rates vary throughout the plume (e.g., they are different at 
the edges of turbulent eddies than within them) a higher resolution model should better 
capture the true chemistry. However, we did not get sufficient comparisons to in-situ 
data to assess such a tendency. As CO2M will co-register XCO2 and NO2 images, 
more research should be done to refine the modelling of the plume chemistry effects 
to support the NOx and CO2 emission estimates. 

https://zenodo.org/records/7448144


CoCO2 2023   
 

D4.8: Synthesis and recommendations 11 

3.2 Conclusions from the light plume inversion activities (T4.2) 
In task T4.2, we studied different methods to derive local scale CO2 (and NOx) emissions from 
cities and power plants based on XCO2 (and NO2) images from individual or ensembles of 
overpasses of a satellite spectro-imager such as CO2M. The focus has been on 
computationally light methods, i.e., approaches which are heavily data-driven and which do 
not rely on numerical atmospheric transport models. The methods have been benchmarked 
using 1) synthetic CO2M data extracted from the SMARTCARB data set simulated with the 
COSMO-GHG model, that covers 16 emission sources in central Europe (Kuhlmann et al 
2019) and 2) real TROPOMI NO2 observations over the Matimba/Medupi large emission 
source in South Africa. 
We have studied four methods for analysing instantaneous plume images: the inversion of a 
Gaussian Plume model (GP), the Integrated Mass Enhancement method (IME) and two 
versions of the Cross-Sectional Flux method (CSF and Light CSF, LCSF). In addition, the 
Divergence method (Div) was tailored for CO2 emission quantification at the annual scale by 
averaging satellites images (Hakkarainen et al., 2022). Deliverable D4.3 provides a theoretical 
background and an initial general description for these methods. Deliverable D4.4 and then 
the publications from T4.2 (Hakkarainen et al. 2022, 2023a and 2023b, Kuhlmann et al. 2023 
and Santaren et al. 2023) provide details and updates regarding the specific configurations 
that have been tested. 
The computation times of the different implementations were analysed using one month of 
cloud-free XCO2 and NO2 data over the SMARTCARB domain. It should be noted that the 
computation time is less dependent on the specific method than on the choice of the pre-
processing algorithm, the optimization of the implementation, and the number of fitting 
parameters selected for each method. For example, in the tests documented in D4.4, CSF, 
IME and GP used a complex pre-processing algorithm for detecting the plume locations and 
for computing a curved coordinate system following the plume’s ridge, taking about 20 min 
computation time. On the other hand, the LCSF defined a non-curved coordinate system 
based on the wind direction near the source, which is significantly faster (<3 min). The 
computation time to determine the emissions from the pre-processed images are <30s for 
IME, 3-9 min for LCSF, and 1-5 min for CSF. With 90 min the GP method was the most 
expensive method. This can be explained by the specific implementation used here, including 
an optimization of the centre curve of the Gaussian plume model, which required recomputing 
the curved coordinate system in each iteration of the inversion process. The Div method takes 
about 20 minutes. The methods were not implemented with the goal of optimizing computation 
times, thus a reduction of the computation time is possible and might be desired when applying 
the methods for near-real-time operational monitoring of the sources worldwide. Overall, 
computation time should not be a major roadblock when implementing one (or several) of 
these methods in an operational system. 
All methods were implemented in the open source ddeq Python library for data-driven 
emission quantification (Kuhlmann et al. 2023). The library provides shared data formats 
(using the xarray library) and functions for input, pre-processing, post-processing and output, 
with the flexibility for the different methods to use different sequences of processing steps. 
The only requirement to apply the methods to new datasets (i.e., satellite data, wind products 
or source locations), is to implement new functions to read the data to the data format shared 
by the library. The overall processing of the data is thus highly automatized. 
The initial conclusions from the SMARTCARB benchmarking inter-comparison exercise have 
been detailed in deliverable D4.4, and then updated in Santaren et al. (2023), with scores of 
RMS errors in the annual emission estimates of 20% (GP), 27% (CSF), 31% (LCSF), 55% 
(IME) and 79% (Div). These scores correspond to the most realistic benchmarking scenario, 
which includes the loss of observations in the satellite swath due to clouds, realistic 
observational noise and the use of ERA-5 winds for the analysis (instead of the wind field from 
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the COSMO-GHG simulation behind the benchmarking dataset) which have a coarser 
horizontal resolution (~0.25° vs. ~0.01°) than the satellite images.   
The tests showed that GP, CSF and LCSF performed best in retrieving instantaneous 
emissions, with interquartile ranges in deviations from the true emissions between 20% - 60% 
for most cases. The evaluation of the results included the confrontation of the (generally 
partial) diagnostics of uncertainty by the different methods against the true error in the 
emission estimates. We introduced thresholds for the acceptable uncertainty below which 
estimates are selected. The overall accuracy and number of estimates for a given method 
are impacted by the values assigned to these thresholds (Fig. 1): when this threshold is low, 
the number of estimates strongly decreases and the overall accuracy increases more or less 
depending on the inversion method. The uncertainty estimates of the CSF and IME methods 
were sufficiently reliable and accurate to be applied for outlier detection and data screening 
while the uncertainty estimation of the GP and LCSF methods should be improved. Ensemble 
approaches which gather results of different combinations of inversion methods show 
important increases in the number of estimates compared to any single method but do not 
provide any significant improvement in terms of accuracy. 
 

 
Figure 1: Accuracy vs. number of the instant estimates of emissions from cities and power 

plants when applying the light plume inversion methods of T4.2 to XCO2 and NO2 cloud-filtered 
images and using ERA5 winds. The number of estimates and accuracy vary with the applied 
uncertainty threshold. A stricter threshold results in a lower number of estimates but usually 
in improved accuracy per estimate. The filled areas represent the inter-quartile ranges of the 

distributions of the relative absolute deviations between the estimates and the actual 
emissions. Note that the relative absolute deviations of the CSF, GP and LCSF methods are 
characterized by IQRs whose first/third quartiles are at most equal to ~20 %/~60 %. The 90th 
percentiles of the distributions are shown in the inset (fig. included in Santaren et al., 2023; 

update of the results documented in D4.4).  
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The estimation of instantaneous emissions is generally more uncertain than the estimation of 
annual emissions. The seasonal cycles of the emissions were not reproduced with any of the 
methods. Further development is thus needed to improve the estimation of the intra-annual 
variability of the emissions. 

All methods were also tested with real data by considering one year of Sentinel 5P/ 
TROPOMI NO2 observations to derive NOX emission estimates for the Matimba-Medupi 
power plant area in South Africa (Hakkarainen et al. 2022, Hakkarainen et al. 2023b). 
Compared to Eskom-reported emissions (https://www.eskom.co.za/dataportal/ 
emissions/ael/, Fig.1), each of the methods strongly underestimated the magnitude of the 
source if the commonly used NO2-to-NOX conversion factor of 1.32 was applied. High-
resolution large-eddy simulations with the MicroHH model with a simple plume chemistry 
scheme showed that due to the non-linear chemistry, the optimal NO2-to-NOX conversion 
factors are method-dependent and the derived values for these factors are substantially 
(more than 50%) higher than the commonly used value of 1.32. The MicroHH simulations 
covered periods of 48h, therefore it was not possible to derive optimal scaling factors for the 
Div method. By applying the updated conversion factors, the IME, LCSF and CSF methods 
yielded the most accurate emission estimates (within about 20-30% of the reported emissions) 
while GP and Div (with the non-optimised conversion factor) yielded poorer estimates (within 
50-60% of the reported emissions).  It is worth noting that despite the improved scaling factors, 
all the methods still underestimated the emissions.  

All lightweight methods are based on simplifications and assumptions. Our tests indicated that 
the GP, CSF and LCSF methods perform most robustly in CO2 emission estimation. The 
LCSF method appears to be the most convenient to maximize the number of instant estimates, 
the GP method to derive the most accurate annual estimates (when applying a strict 
uncertainty threshold), and the CSF method to derive the most accurate instant estimates 
when considering a moderate uncertainty threshold. However, the performance of the 
methods critically depends on the pre-processing techniques, like de-noising, background 
estimation, and plume detection. The poor scores of the IME method, for example, may have 
been impacted by the specific plume detection approach and may be further improved by 
better accounting for cloud cover. During the benchmarking activities, all the computationally 
light methods were progressively optimised and tuned, and their performances regularly 
improved. Thus, it is expected that further optimization of the practical implementation of 
the methods and pre-processing techniques could be achieved and could lead to improved 
robustness, uncertainty quantification and outlier detection.  

At this stage, it would be important to continue the development and optimisation of all the 
methods and their uncertainty characterization and to consider if ensemble methods would 
eventually generate the most robust estimates, and not just more estimates, as they do now. 
Despite these new developments, keeping a high level of automation via a transparent and 
modular library such as ddeq will be critical for the operational application of proven and 
standardized methods. 

3.3 Conclusions from the plume inversion activities based on local scale 
transport models (T4.3) 

Task T4.3 was dedicated to the development of atmospheric inversion approaches at the local 
scale exploiting the information from high-resolution atmospheric transport models for the 
quantification of city and industrial plant CO2 emissions based on spaceborne images of their 
XCO2 plumes. The observations assimilated by these systems potentially also included 
images of species co-emitted with CO2 like CO and NO2. The corresponding deliverable D4.5 
documented three complementary studies, which provided valuable insights into different 
aspects of the use of atmospheric transport models: 
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• The development of an advanced processing of XCO2 images for the detection and 
inversion of plumes based on Convolutional Neural Networks (CNN) trained with 
high resolution model simulations (Dumont Le Brazidec et al., 2023a and 2023b). 
The expected advantage of a CNN, when trained with realistic model simulations with 
exact knowledge of the position of the plume and of the emission strength, is that it 
can optimally exploit the skill of the transport model to simulate typical plumes under a 
wide range of transport conditions when processing the information contained within 
an image without being affected by model errors when modelling a plume at a given 
time (which are potentially large). This implicitly assumes that the model simulations 
used to train the CNN are not biased and represent well the distribution of plumes over 
wide ranges of dispersion conditions, while the model simulation of the direction and 
shape of a real plume at a given time often lacks precision. Thanks to exploiting the 
model skills, the CNN-based detection and inversion of plumes was expected to 
provide more accurate results than the simpler techniques tested in Task T4.2, 
especially for complex transport conditions, and if tackling reactive species in addition 
to CO2. It was tested on the same benchmarking framework based on the pseudo 
CO2M SMARTCARB simulations as that used in the T4.2. However, the application of 
the CNN-based methods was restricted to test cases without gaps in the images. 

• The development and application of a city-scale Carbon Cycle Fossil Fuel Data 
Assimilation System - CCFFDAS (Kaminski et al., 2022a) to pseudo data 
experiments for the city of Berlin and its surroundings. The aim of the analysis with this 
city-scale inverse modelling system was to assess the ability to solve for the spatial 
or sectoral distribution of the emissions within the urban areas at the resolution 
of CO2M using a high-resolution transport model that solves for the relationship 
between the emissions in each modelling grid cell and all observations. Since the 
CCFFDAS controls the parameters behind the emission models rather than the 
emissions themselves, a parallel objective was to assess the impact of the co-
assimilation of the NO2 observations from CO2M which may provide additional useful 
constraints on these parameters. 

• The analysis of the CO2/CO local concentration enhancement ratios over emission 
hotspots in Europe based on available satellite NO2 (to define the location of the 
emission hotspots), CO and CO2 observations (from TROPOMI and OCO-2) to assess 
the reliability of the co-assimilation of co-emitted species for the local scale 
inversions.  

The general conclusions of these studies confirmed the potential of the use of transport 
models to strengthen the source estimates compared to the T4.2 light local scale inversion 
techniques (when using CNN-based approaches) and to infer emissions from specific plants 
or districts within a city (with CCFFDAS approaches, and when co-assimilating XCO2 and NO2 
satellite data). The extrapolation skill of the CNN-based approach, i.e., the ability to infer 
emissions from sources that are not covered by its training set of simulations, was evaluated 
with first positive insights. It is a critical aspect of the method since its operational use should 
rely on a training over a limited set of simulations to cover wide sets of sources (mainly for 
computational reasons, since high resolution transport models are computationally 
expensive). After the delivery of D4.5, further improvement and analysis of the CNN-based 
inversion of the XCO2 plumes, and in particular comparisons between the results obtained 
with the CNNs and with the CSF method that was tested in T4.2 helped strengthen the 
conclusions from this deliverable. They are documented in the publication by Dumont Le 
Brazidec et al. (2023b). 
In D4.5, the CNN-based detection of the plumes in XCO2 images (i.e. the CNN-based 
segmentation of the XCO2 images) was showing better performances than the statistical 
threshold tests used in T4.2, even when tackling scenes with overlapping plumes or plumes 
from cities and power plants not included in the CNN training sets. These results were 
obtained without using wind-fields or NO2 images in input of the CNN. 
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The proven effectiveness of CNNs in inverting XCO2 plumes from large point sources, 
using pseudo XCO2 and ERA-5 wind field re-analysis is noteworthy. In T4.3, image-to-scalar 
CNN models have been effectively employed for estimating power plant emissions, focusing 
on deducing the flux rate associated with anthropogenic plumes. Recent research, as 
highlighted in D4.5 and in Dumont Le Brazidec et al., 2023b, strongly supports the feasibility 
of developing a "universal" CNN model, trained on a selected group of power plants, and 
deriving highly accurate estimates for various plants. The generalisation capabilities of the 
CNN models used in T4.3 have been rigorously tested on unobserved images from different 
regions within the SMARTCARB domain, with a focus on plumes from the Boxberg, 
Lippendorf, and Turow power plants. Each model, trained with data excluding the target plant 
to which it is associated, has shown notable accuracy, as evidenced by median relative errors 
around 20–25% and median absolute errors significantly lower than those achieved with the 
CSF method for instant emission estimates based on individual XCO2 images (Fig. 2). The 
use of the results from the CNN-based plume detection or of the NO2 images co-registered 
with the XCO2 images in input of the CNN models for inversion do not increase significantly 
this accuracy. This demonstrates that the CNN-based inversion problem could be tackled 
without a preprocessing step for the plume detection. However, in T4.3, the CNN-based 
inversion was not tested on plumes from cities due to the lack of training/testing datasets 
specific to such plumes. 
The total training time of the CNNs for inversions in Dumont Le Brazidec et al. (2023b) is of 
approximately four hours (using an Nvidia Quadro RTX 5000 16GB GPU). The application 
time on an image is almost instantaneous. This makes the method highly competitive with 
the light local scale inversion techniques from T4.2 for operational use, provided that the 
approach has a high extrapolation skill.  
However, the current version of the CNN-based inversion algorithm may require adjustments 
when applied to new datasets that significantly differ from the training data, such as those with 
vastly different topographies. The level of automation of this algorithm is thus currently 
limited. To align the CNNs with the new data characteristics, fine-tuning through retraining on 
a subset of the new data or similar data may be necessary. This process aims to rectify any 
mismatches between the original training data distribution and that of the new dataset. 
Acquisition of these new data could involve conducting targeted simulations or employing 
specific data augmentation techniques. While the existing CNNs are designed for robustness 
and generalizability, notable variances in the data, especially in the characteristics of the 
plumes, could compromise the accuracy of the results when directly applied to real-world 
scenarios. 
It is thus important to acknowledge the challenges in generalising CNN-based results to 
more complex scenarios. These include plumes from urban environments, which are 
inherently more complex and exhibit lower signal-to-noise ratios than those from power plants, 
and areas with more intricate topography than Eastern Germany. These challenges are 
intrinsically linked to the size of the training dataset, raising questions about the extent of 
simulations required for global application. Moreover, the effectiveness of CNN models, 
trained on simulated data and applied to actual satellite images, warrants thorough scrutiny to 
ensure their generalisability and accuracy in a variety of real-world scenarios. Additionally, the 
challenges posed by the loss of pixels in the XCO2 images due to cloud cover and the 
presence of systematic error patterns in these images are critical topics that need to be 
addressed. 

In summary, while the use of CNNs in the context of T4.3 was highly promising and 
demonstrated effectiveness, there is a clear need for ongoing research and development to 
address these challenges and to fully assess the potential of CNNs in broader and more 
complex conditions. 
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Figure 2: density plots of the absolute value of errors (relative to the true emissions of not) 
between the predicted and the true Lippendorf (top) and Turow (bottom) instant emissions 

(corresponding to satellite overpasses). Four sets of predictions are considered, 
corresponding to three CNN models with three different sets of inputs and the CSF method. 
Each CNN model is trained with the XCO2 field and the winds field re-analysis as inputs. Two 

of the models additionally assimilate the NO2 field or the predictions of the CNN-based 
segmentation model (for the plume detection). Predictions with relative errors greater (in 

absolute value) than 150% or absolute values of errors greater than 30 Mt/yr were set to 150% 
or 30 Mt/yr to increase the visibility in the figure. Figure from Dumont Le Brazidec et al., 2023b.  

 In a more general way, there is a need to conduct tests in more realistic conditions to 
better characterize the skill, the cost, and the required level of complexity of the 
approaches based on local scale transport models. This applies to the initial application 
of the CCFFDAS which is made, here, assuming that residual (after correction of biases, e.g. 
though rotation of plumes) transport modelling errors can be summarized as a random 
Gaussian noise without spatial or temporal structures (i.e. in a way that does not really 
challenge the local transport model-based inversions), to explore the full potential of XCO2 
observations. However, overcoming the actual transport model errors can require complex 
approaches as shown by the application of CNNs, and these approaches may somewhat 
reduce the constraint on the sectoral and spatial distribution of the emissions within cities. On 
the other hand, the CCFFDAS approach has the potential to combine the atmospheric 
constraints from CO2M with those from additional observational data streams on both fossil 
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and natural emissions, including SIF from CO2M. This extra potential has yet to be explored. 
It lies in the simultaneous constraint on natural fluxes (through SIF) on the one hand and on 
the combined fossil and natural atmospheric signal (through XCO2) on the other hand from 
the same platform. This simultaneous observational constraint appears a promising approach 
to solve for the fossil emissions. This applies not only to the city-scale examined here. It is 
equally relevant at the global scale, where it could be explored with the system of Kaminski et 
al. (2022b). Furthermore, the CCFFDAS could also be operated at national to continental scale 
and enrich the ensemble of national-scale inversions operated in Task 4.4. 

Furthermore, the analysis of the ratios between the local enhancements of CO2 and CO over 
emission hotspots revealed the limited amount of spatial and temporal overlapping between 
CO and CO2 observations over such hotspots (at least in Europe) when considering the 
existing datasets (here that of TROPOMI and OCO-2), and the high temporal and spatial 
variability of these ratios, and thus, implicitly, the large variations and uncertainties in the 
underlying CO and CO2 emission ratios. The first problem should be overcome in the future 
by the availability of co-registered images of NO2 and XCO2 from CO2M. However, in the 
CCFFDAS OSSEs, the ability to infer some information about the spatial and sectoral 
distribution of the emissions within the city based on the co-assimilation of the pseudo NO2 
and XCO2 images from CO2M was explored for a limited set of alternative assumptions 
regarding the uncertainties in the NOx/CO2 emissions ratios. The ability to exploit the NO2 co-
assimilation with the CCFFDAS should probably be assessed with further scenarios of 
emission ratio uncertainties. 

3.4 Confronting the conclusions from tasks T4.1-3 on local scale inversions 
Tasks 4.1 to 4.3 addressed the challenge of quantifying emissions from industrial point 
sources and cities using XCO2 images from different angles. T4.1 evaluated how well the 
plumes from such sources can be simulated and how models should be set up to properly 
represent such plumes. T4.2 developed and benchmarked data-driven emission quantification 
methods that do not require expensive atmospheric transport simulations as in T4.1. T4.3, 
finally, investigated novel or improved emission plume inversion approaches in connection 
with transport simulations such as in T4.1. 
The evaluation of models in T4.1 showed that atmospheric transport models are able to 
represent XCO2 plumes as will be observed by CO2M in a very realistic way if they are run at 
a resolution of about 2 km or better. Typically, the models simulate correctly the 
characteristic statistical properties such as mean width and amplitude as a function of 
distance from the sources. However, the analysis of the simulations from T4.1 shows that the 
plumes cannot be reproduced perfectly in space and time due to the stochastic nature of 
turbulence and also due to uncertainties in the local wind. 
The benchmarking of lightweight plume inversion methods performed in T4.2 largely relied on 
synthetic CO2M observations produced with one of the models tested in T4.1, the COSMO-
GHG model operated at 1 km resolution. Knowing that the simulated plumes are a good 
representation of reality means that the assessment of the methods in T4.2 is adequate 
and relevant. However, the evaluation of the COSMO-GHG model in T4.1 indicated that this 
model is somewhat more dispersive than others and also more dispersive compared to the 
observations. As a result, real plumes will likely be more compact and more pronounced and 
therefore more easily detectable. The results of the benchmarking exercise in T4.2 may thus 
be a bit too pessimistic: for a given quality threshold (based on the diagnostic of uncertainties), 
more plumes might be detectable in reality and the uncertainty in the emission estimates per 
case might be a bit smaller. On the other hand, the generation of synthetic CO2M observations 
was based on very simple assumptions about the observation error characteristics, which 
might have led to somewhat too optimistic results potentially compensating the previous, 
pessimistic aspect. 
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In a more general way, due to their realism, simulations such as that of T4.1 are highly useful 
in the context of Observing System Simulation Experiments (OSSEs), where the potential of 
CO2M (or other) observations for estimating emissions is tested. In order to represent the 
uncertainty in atmospheric transport, however, it is advised to apply ensemble methods, i.e., 
ensembles of simulations with perturbed meteorological initial and boundary conditions. The 
synthetic observations could then be generated from one ensemble member and the inversion 
methods could be tested with the remaining members.  
The fact that plumes can be simulated realistically but not with the same turbulent structure 
as the real plumes and not necessarily at the right location due to errors in local wind direction, 
has important implications for inversion approaches as applied in T4.3. This confirms the 
assumption made in the rationale for the use of CNNs trained with model simulations 
for the plume inversion in this task. This also confirms that the current assumptions on 
the model error made for the application of the city-scale CCFFDAS is too optimistic. 
Due to unavoidable mismatches between simulated and real plumes, classical inversion 
methods (including the current version of the CCFFDAS) minimizing the differences between 
a single forward model run and the observations are not suitable. We recommend to explore 
the treatment of the results of such model error. One possibility to reduce spatial mismatches 
is to rotate the simulated plumes, but a likely better approach is also to apply a non-local metric 
as proposed by Vanderbecken et al. (2023), which avoids the critical double-penalty problem 
of traditional approaches. Alternatively, model simulations (as in T4.1) were used to train the 
CNN-based inversion developed in T4.3. Again, the fact that such model simulations can be 
considered to represent reality quite accurately means that such a training is meaningful. 
As already introduced in section 3.3, Dumont Le Brazidec et al., (2023b) compared the CSF 
method from T4.2 and the CNN method from T4.3 for the estimation of emissions from power 
plants. As reported in Figure 2, the CNN approach yields considerably more accurate 
predictions of power plant emissions compared to the CSF method. For Lippendorf, for 
example, the CNN model shows a median absolute value of the relative error of approximately 
20 % and a median absolute error of around 3 Mt.yr−1 (the average emissions for Lippendorf 
are 15.2 Mt.yr−1). In comparison, the CSF method exhibits a higher median absolute value of 
the relative error of around 40 %, and the absolute value of the error is approximately double, 
at 6 Mt.yr−1. Conclusions are similar for the two other power plants studied in Dumont Le 
Brazidec et al. (2023b). Given an appropriate dataset and training, and when considering 
full XCO2 images, the CNN method is likely to outperform the CSF and other light plume 
inversion methods in terms of accuracy and efficiency on all types of hotspots and scenarios.  
 
However, current CNN models, trained and tested exclusively on full XCO2 images (without 
clouds) from the SMARTCARB dataset over East German power plants, may have significant 
biases in retrieving the emissions of hotspots and cities in other geographical locations. A too 
limited training not sufficiently representing the plumes in other meteorological situations and 
other locations of the world (e.g., coastal cities, cities in more variable topography, etc.) can 
be a critical issue for the approach. Handling the gaps in images due to cloud cover and 
transferring the CNN model trained on simulated data to real satellite observations will also 
not be trivial steps. The differences in the characteristics of the measurement uncertainties 
between reality and those assumed in the synthetically produced data could raise critical 
issues. The training with simulated observations is a promising way forward, but it should be 
extended to increasing challenging problems (e.g., overlapping plumes, cloud coverage, other 
geographical and meteorological settings). 
 
Given the open questions regarding appropriate training of CNNs, the light plume detection 
and inversion techniques analysed in Task T4.2 keep on being the most suitable 
approaches to process images for a large number of target sources (point sources and 
cities) in the near term. For operational applications, we thus currently recommend the use 
of these light techniques. However, the CNN-based approach could quickly reach a good 
level of maturity and should keep on being developed and extensively tested. 
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3.5 Recommendations regarding the development and integration of a 
specific module to tackle emission hot spots in the multi-scale inversion 
prototype 

The findings from the previous sections stress the challenge of simulating the plumes and 
inverting the emissions from local sources in the prototype of the CO2MVS multi-scale 
inversion system under development, which relies on the IFS transport modelling at 9 km 
resolution. First, the spatial resolution of the IFS is too coarse to properly model individual 
plumes as indicated in section 3.1. Second, the inversions in the multi-scale inversion 
prototype have to rely on the comparisons between the model simulations and the 
observations at the observation time (since it is the basis for tackling the large scales 
simultaneously), which, as discussed in section 3.4, may be highly impacted by the transport 
modelling errors at local scale. 

 
Figure 3: schematic of a potential strategy to split the operational process of the satellite XCO2 
observations between a specific branch dedicated to local inversions of plumes, and the main 

multi-scale global inversion framework 

Therefore, in the near term, there will be a need for a distinct module (a specific branch of 
the operational system) handling the local inversions based on XCO2 spaceborne 
imagery, with the identification of signals associated with plumes from individual sources or 
emission hotspots, and their processing via plume inversion approaches. As indicated in 
section 3.4, such a module would probably have to rely on the light plume detection and 
inversion methods investigated in T4.2, and maybe on CNN-based inversions if significant 
progress is made quickly in testing these approaches on complex cases. In order to connect 
or to impose the results obtained with such a module to the multi-scale inversion estimates, 
the two branches would have to be coupled (see section 5). The branch for local scale 
inversions could focus on instant estimates for local emissions based on individual images, 
leaving the temporal and spatial extrapolation of these estimates to the multi-scale inversion 
branch. Alternatively, the local scale inversion branch could exploit a priori information from 
inventories to deliver full instant to annual estimates of the emissions from urban and point 
sources. A partitioning of the XCO2 satellites images between the two branches as illustrated 
in Figure 3 may be the simplest solution to ensure that the same observations are not 
assimilated twice when coupling these two branches. But advanced coupling techniques (such 
as the one detailed in section 5.2) may allow to exploit the full XCO2 images in the multi-scale 
inversion branch (see section 4.1), even when part of these images are already exploited in 
the local scale inversion branch. 
The use of standard tools such as the ddeq Python library developed in the frame of T4.2 
should facilitate the development of a branch dedicated to local scale inversions and its 
coupling to the multi-scale inversion prototype. The ddeq library already provides a high 
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degree of generalization and all light plume inversion methods could be applied to upcoming 
XCO2 satellite images to quantify the emissions for a provided list of source locations at the 
global scale. This requires only that the data input is provided in the ddeq’s data format. The 
ddeq library can also be applied to other trace gases (CH4, CO and NO2), but additional 
research is required to accurately account for the NOx chemistry inside plumes when analysing 
NO2 images. Additional development in ddeq would still be necessary to improve the use of a 
priori information from bottom-up inventories and for implementing robust quality controls, i.e., 
estimating the uncertainties in a more accurate way and filtering problematic inversion cases 
reliably (e.g., under low wind speed conditions of when analysing overlapping plumes).  
The computational costs for the light-weight approaches are very low (see section 3.2): the 
computation time for estimating CO2 emissions of 16 sources using one month of cloud-free 
data from three CO2M satellites varied between 30-120 min depending on the method. We 
expect that CO2M will be able to quantify the emissions of up to 1000 hot spots globally 
(Kuhlmann et al., 2021), and the computational costs for 1000 sources would be only of 30-
125 hours per month. This highlights the feasibility and relatively low cost of a specific 
operational branch dedicated to the XCO2 plume inversions.  
On the longer-run, if the spatial resolution of the IFS can be refined to 2-km or less, the multi-
scale inversion prototype may play a stronger role for the local inversions: to train the CNN-
based inversion approaches, or via large local ensemble approaches and the use of more 
suitable metrics for the model-observation comparisons (Vanderbecken et al., 2023) that could 
allow for a sufficient account of the transport model uncertainties at local scale (see section 
3.4). A complex definition of the observation vector could be required to split the observation 
into the part that would feed suitably the local scale constraint, and that kept for the large-
scale constraint on the flux estimates. 
  

4 Synthesis from the national scale activities in T4.4 
4.1 Summary of the conclusions from the inter-comparison of national 

scale inversions (T4.4) 
In Task T4.4, 11 national scale inversions systems were developed and 10 of them were 
applied for the estimation of the CO2 and CH4 emissions from European countries (and to 
conduct tests with synthetic data over the USA). Deliverable D4.6 details these inversion 
systems and the results from these inversions. This major ensemble of inversions was 
complemented by the derivation of the national scale CO2 anthropogenic emissions based on 
European scale NOx and CO inversions, as part of WP6 and of the CoCO2 report to GST (see 
deliverables D6.4, D6.5 and D6.6). The 11 systems developed in T4.4 control separately the 
CO2 or CH4 anthropogenic and natural fluxes. Their relatively high spatial resolution ranges 
from 0.5° resolution down to 10 km (for the control of the fluxes) or to 5 km (for the transport 
modelling), with both Eulerian and Lagrangian transport models, and variational, ensemble 
and analytical inversion approaches. Three of the systems assimilate surface and/or satellite 
CO2 observations, the others assimilating surface observations only. The aim of this major 
inverse modelling effort was to document the current strategies and capabilities to monitor the 
CO2 (and, to a lesser extent, CH4) fluxes at national scale, and, in particular, to monitor the 
CO2 anthropogenic emissions. It also aimed to provide support and guidance for the design 
of national operational systems and of the regional scale configuration of the multi-scale 
inversion system for the CO2MVS.  
Relatively novel regional inversion capabilities were developed and tested to meet the 
objectives of T4.4 but the results demonstrate the lack of maturity of some of the 
corresponding components: mainly the separate control of the CO2 anthropogenic emissions, 
the co-assimilation of co-emitted species, the co-assimilation of surface and satellite CO2 
observations, and the underlying characterization at fine resolution of the uncertainties in the 
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inventories of the anthropogenic emissions of CO2 and co-emitted species used as prior 
estimate of the inversions.  
The major result from this set of inversions is the lack of control of the CO2 anthropogenic 
emissions at the annual to monthly and national scales when using the existing CO2 
observations. The co-assimilation of CO and NO2 data does not increase this control 
significantly. In parallel, there is a large spread of the estimates of CO2 natural fluxes (and of 
the CH4 anthropogenic and natural fluxes) across the different systems or when assimilating 
surface or satellite observations. 
  
Based on the analysis of the results, deliverable D4.6 identifies the lack of control of the 
anthropogenic emissions at large scales as a lack of ability to connect large scale variations 
in the CO2 fields (dominated by the signal from the CO2 natural fluxes) to the anthropogenic 
emissions. Therefore, D4.6 promotes the use of spatial resolution finer than 10 km for the 
transport modelling and for the control of the fluxes if targeting the CO2 anthropogenic 
emissions, and the assimilation of observation signals associated with specific emissions 
hotspots: data from ground stations dedicated to specific urban areas, portions of the XCO2 
spaceborne observations corresponding to plumes from local sources etc. in addition to the 
other CO2 observation datasets. There is currently a lack of such observations in the existing 
observation networks, but the situation should dramatically change once CO2M will be in orbit, 
and with the promotion of the CO2 urban networks e.g. via the ICOS Cities project. The aim 
would be to extrapolate the information on local sources to the larger scales relying on 
accurate characterizations of the spatial structures of the uncertainties in the 
inventories used as prior information of the national scale inversions. This, in turn, would 
require a dramatic improvement of the knowledge of these uncertainties, and of the ability to 
model them appropriately. 
 
D4.6 also promotes a systematic analysis of the inverse modelling components that are 
responsible for the spread of the results for the CO2 natural fluxes and CH4 emissions 
across the inversions. As illustrated in D5.3, modular inversion platforms such as the 
Community Inversion Framework, allowing a consistent use of several transport models 
(seven so far, covering most of the transport models used in T4.4), with a large range of 
inversion set-ups, would be a natural tool to use in the future for attributing the spread of the 
results, assessing errors in inversions and benchmarking systems and applications. 
 

4.2 Perspectives and recommendations regarding the configuration of the 
main component of the multi-scale inversion prototype 

The main outcome of the analysis in T4.4, i.e. the lack of control of the anthropogenic CO2 
emissions by the inversions using the existing CO2 and co-emitted observations at annual to 
monthly/national scale and the high uncertainties in the CO2 terrestrial ecosystem fluxes limits 
the potential to use these results to promote the development of national-scale operational 
systems. However, the systems developed here lay the technical basis for the development 
of such systems. For example, the ICON-ART system developed by DWD corresponds to 
the system which will be used for the German operational GHG monitoring which is now under 
development (and the situation could be similar in France with the CIF-CHIMERE inversion 
configuration).  
Furthermore, the detailed results of the different national-scale inversion systems in T4.4 bring 
insights for the configuration of the multi-scale inversion systems of the CO2MVS. In 
particular, it highlights the need for this system to rely on the capability of the IFS to model the 
atmospheric transport at spatial resolutions finer than 10 km but also to control the fluxes at 
spatial resolutions finer than 10 km to tackle the CO2 anthropogenic emissions even when 
targeting national-scale budgets. Such a high-resolution configuration must be accompanied 
by the assimilation of data from observation networks dedicated to specific emission hotspots, 
and of the local scale information in satellite data (typically the information on CO2 plumes 
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downwind of local sources or groups of local sources) in addition to the observations dedicated 
to the characterization of large-scale variations in the CO2 concentrations. An alternative is to 
leave the full control of the anthropogenic emissions to local scale inversion (focused on the 
plumes for the local sources) with a worldwide-coverage, in the frame of the coupling between 
the multi-scale CO2MVS system and a specific branch for such local scale inversion (see 
section 3.5). 
In both cases, currently, the lack of observations dedicated to the CO2 anthropogenic 
emissions, and in particular to specific emission hotspots, will maintain a strong limitation for 
the monitoring of the CO2 anthropogenic emissions. The situation will change once the CO2M 
data will become available, but these conclusions also support the deployment of ground 
stations better focused on the anthropogenic emissions than the typical stations e.g., of the 
ICOS network in Europe. 
The results from T4.4 also stress the need to progress on the use of co-emitted species, in 
particular to decrease the uncertainty in the top-down information from co-emitted species (in 
both the observations and the chemistry transport modelling), and to progress on the 
characterization of the uncertainties in the gridded inventories of the emissions of CO2 and co-
emitted species at fine spatial and temporal resolution. Such an effort has been conducted in 
WP2 of this project and it is now resumed in the frame of the Horizon Europe CORSO project. 
 

5 Coupling the systems and scales 
5.1 Motivation 

The initial motivation for discussing the coupling between national and local scale inversions 
in WP4 was the ability to control the CO2 anthropogenic emissions at both scales, and 
the reconciliation of the corresponding estimates, the national scale inversion catching 
large scale gradients due to these emissions, and the local scale inversion tackling plumes 
from individual sources or clusters of sources (emission hotspots).  
By construction, the local scale inversion approaches analysed in WP4 were focused on the 
anthropogenic emissions. The signal from local natural fluxes may not be large enough to be 
detected and processed appropriately with the current observation and inversion systems. 
However, in WP4, the local scale inversion approach was mainly tested on pseudo images 
covering very large local sources of CO2. When scanning in an automatic way the existing 
satellite observations from OCO-2/3 over more than 8-years using the LCSF method assessed 
in T4.2, few plume transects are identified over Europe (see D4.4 and WP6 D6.4, D6.5 and 
D6.6). This limits the ability to assess the potential of ingesting the information from the 
corresponding plume inversions into national scale inversions. Further, the analysis of the 
national scale inversion results revealed the lack of control of the CO2 anthropogenic 
emissions at large scales when using the current observation networks (see section 4.1). 
Therefore, the initial objective of reconciling the national and local scale estimates of the CO 
anthropogenic emissions when using the existing CO2 data had to be reconsidered in T4.5.  
The coupling between the national and local scale inversions from WP4 would rather 
correspond to the coupling between the estimate of the CO2 anthropogenic emissions at 
local scale and the estimate of the CO2 natural fluxes at regional scale. As demonstrated 
in T4.4, the national scale inversion of the CO2 natural fluxes is sensitive to the estimate of the 
CO2 anthropogenic emissions despite the lack of control of these emissions. On the other 
hand, the fine scale variations of the background concentration field behind the plumes 
downwind to the local sources has been shown to be a significant source of uncertainty for 
local scale inversions when using both light techniques such as in T4.2 or techniques relying 
on atmospheric transport models such as in T4.3. However, the national scale inversion may 
hardly provide a reliable simulation of the local variations associated to the natural fluxes. The 
diagnostic of the background concentrations in the satellite images in the frame of the light 
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plume detection and inversion techniques may reveal to be more robust than the information 
from large scale inversions. A mix of both sources of information may however help tackle 
situations for which the loss of data in the satellite images due to cloud cover or high aerosol 
loads prevent from getting a good data-driven characterization of the background 
concentration field. 
Furthermore, as discussed in section 4, the increase of the resolution of the national scale 
inversions and the future availability of the observation from CO2M (and from other 
observation networks or platforms more sensitive to the anthropogenic emissions than the 
current network) may lay down a new basis for considering the control of the CO2 
anthropogenic emissions at different scale, and thus for a coupling between local and national 
scale inversions.  
Finally, section 3.5 discusses the specific coupling between the CO2MVS multi-scale 
inversion system and an operational branch dedicated to local scale inversion. More generally, 
the perspective to couple local to national scale inversions to the multi scale inversion 
prototype has been discussed in the CoCO2 project in view to exploit in the global CO2MVS 
system the information from systems covering limited areas with optimal configuration locally 
or regionally. The option currently envisaged for such coupling consist in the assimilation of 
the results from local and regional scale inversions into the multi-scale inversion system. 
Specific investigations have been conducted to develop such an option as part of WP5 and 
WP6 in connection with WP4. In the frame of deliverable D4.7, ensembles of local scale and 
national scale inversions estimates have been provided by WP4 to WP6 to test this option.  

5.2 The coupling of systems to the multi-scale inversion prototype via data 
assimilation techniques 

The corresponding concept is to assimilate the emission estimates from the high-resolution 
regional inversion system and from the light local plume inversion techniques as observations 
into the global multi-scale inversion system based on the Integrated Forecasting System (IFS). 
The approach, described in more details in the deliverable D5.1, requires two steps: 

1. The derivation of the averaging kernel matrix and of the associated retrieval errors 
from the emission inversion methodology using ensembles from a Monte Carlo 
approach with the local and national scale inversions. 

2. The integration of the local and regional emission estimates into the global IFS by 
merging the IFS Ensemble of Data Assimilation (EDA) output with an ensemble 
Kalman filter approach. 

In that process, it is important to distinguish between several categories of products depending 
on the regional and local scale inversions: 

1. For regional inversions based on Ensemble Kalman Filters: the required 
ensemble information is a by-product of the system.  

2. For regional inversions based on Variational inversion systems: the 
ensemble can be produced based on an EDA approach. 

3. For regional inversions based on Analytical inversion systems: the low-
dimensional averaging kernel matrices and associated retrieval errors can be 
provided explicitly. 

4. For non-Bayesian local plume inversions: the averaging kernel matrix used is 
a Dirac function. The error matrix E is obtained using uncertainty estimation 
techniques tailored to the local inversion method. 
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Figure 4 depicts the layered strategy employed to merge data from regional and local inversion 
analyses into the comprehensive global IFS inversion process, and further, to mimic a two-
way nesting between these systems via the provision of boundary conditions from the IFS to 
the local and regional scale inversions system. 

 

Figure 4: Schematic of the multi-scale approach for the integrated global IFS inversion system. 
The IFS global inversion system provides boundary conditions to the regional and local 

inversion systems. The high-resolution posterior emissions obtained from those systems are 
in turn assimilated as observations into the global IFS model, enabling a two-way propagation 

of information. 

In an operational context, the EDA or posterior IFS ensemble will be produced routinely and 
available at any time. The inherent flexibility of the proposed ensemble assimilation approach 
for the regional and local emission product will make possible their integration in the global 
IFS system in a continuous and seamless manner. 
 

6 Benchmarking strategies: lessons from the local and 
national scale activities 

The conclusions from T4.1-3 reveal that the benchmarking test cases, and in particular those 
based on the SMARTCARB simulations, were extremely useful to develop and optimize the 
local scale methods, and to provide a general ranking among them. It can clearly be used 
to assess new methods or local scale inversion configurations. 
However, the conclusions from T4.1-3 also highlighted the fact that these benchmarking test 
cases were relatively simple and did not fully challenge the methods. For example, the 
differences between the COSMO and ERA-5 wind fields was used to characterize the 
uncertainty in the wind fields, which was probably not realistic enough. Furthermore, the focus 
on large and relatively isolated power plants and cities over the flat part of Eastern Germany 
and far from the coast in T4.2 and T4.3 provided favourable conditions for the method 
evaluation. The methods were not challenged with a realistic representation of the systematic 
error in the satellite XCO2 observations. The simulation of the errors on these observations 
was restricted to Gaussian white noise, albeit with realistic statistics using error 
parametrization depending on solar zenith angle and surface albedo. Furthermore, as 
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mentioned in sections 3.1 and 3.4, the COSMO-GHG simulated fields in the SMARTCARB 
benchmarking dataset were likely more dispersed compared to the MicroHH simulated fields, 
while the latter fields showed a better match to in-situ observations. Hence, the COSMO-GHG 
data has slightly wider plumes of lower amplitude than what one might observe in real data. 
Light-weight approaches (including machine-learning methods if those methods definitely 
have high extrapolation skills) are likely necessary to monitor the emissions of hot spots in an 
operational system due to their low computational costs. So far, the methods have mainly 
been developed, trained and validated with synthetic observations. How well the methods will 
perform with real satellite observations is therefore not fully assessed. To obtain reliable 
emission estimates with lightweight methods, it is therefore necessary to evaluate their 
performance with real observations as soon as they become available. One option is a 
validation with measurements of point sources with well-known emissions (e.g. 
instrumented power plants) in measurement campaigns. For individual sources, 
comparison with emission estimates from inversions using high-resolution models is also an 
option. It would be desirable to conduct regular validation campaigns to cover different source 
types, meteorological conditions, background chemistry, seasons and locations. 
The common open source ddeq Python library environment that was used for the 
benchmarking of data-driven local scale emission quantification methods turned out to be very 
useful. The common benchmarking environment allowed direct and transparent comparison 
of the methods. The open-source environment is also flexible for optimizing further the current 
methods (including the pre-processing methods) or implementing new approaches. 
In task T4.2, as well as in all benchmarking activities, the choice of the metrics used for 
comparing the methods is a crucial step. We chose to focus on the difference between 
estimated emissions and the true emissions. We studied both their distributions and number 
of ‘successful’ estimates (i.e., which passed selected thresholds on the diagnostic of 
uncertainty) as well as goodness in estimating monthly and yearly emissions.  Results were 
analysed considering also the emission strength. Overall, the selected metrics led to satisfying 
analysis and ranking. However, we faced some challenges in implementing thresholds for 
‘successful’ estimates since the diagnostic of the uncertainties (as a natural choice of quality 
indicator) of some methods was not realistic, or focused too much on a specific source of 
uncertainty. As mentioned in section 3.2, further work is needed to improve the uncertainty 
characterization but meanwhile, other ways of implementing practical thresholds on quality 
indicators may be needed. 
Overall, the benchmarking activities and the shared ddeq environment on the ICOS-CP 
Jupyter Server were found very useful in CoCO2 Task T4.2, with the following advantages: 

• it revealed bugs in implementing methods 
• it supported the optimization of the methods 
• it allowed sharing pre-processing steps 
• it allowed transparent and direct comparisons 
• it allowed comparing computational times in a rigorous way 
• it allows flexibly extensions to test and benchmark: the most important need of 

extension is now the inclusion of synthetic XCO2, NO2 but also aerosol CO2M 
observations from pole-to-pole, including realistic simulations of the systematic errors 
on these observation retrievals 

• it allows further optimization of the methods and implementation of new methods. 
For national-scale inversions, the inter-comparison protocol was relatively loose, due 
to the high number of systems to be developed and tested, and in many cases, due to the lack 
of ability to impose general constraints for the characterization of the uncertainties in the prior 
estimates of the fluxes and of the regional boundary conditions, for the transport model and 
observation errors, etc. This stems for the diversity of the types of transport models, control 
and observation vectors, of the process of the boundary conditions etc. across the systems. 
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Many of the inversion components are hard-coded in the traditional inversion systems, so that 
they can hardly be adapted to common features. However, the results revealed the need to 
investigate systematically and in a standardized way the weight of each inversion 
component in the spread of the results for the CO2 natural fluxes and CH4 emissions. The 
joint use of community and modular platforms handling the variety of inversion 
approaches, of control vectors, of assumptions regarding the prior, observation and model 
error statistics, and ultimately, the variety of (Lagrangian and Eulerien) transport models used, 
such as the Community Inversion Framework (CIF) should support such a detailed analysis, 
as shown by the first exercises in WP5: T5.3 and T5.6. This would support a more exhaustive 
inter-comparison and analysis, to identify the best options for the inversion components, and 
thus standard and proven methods. The joint use of community tools would also increase the 
transparency of the inversion protocol and confidence in the results. 
 

7 Conclusion 
The synthesis of the analysis in WP4 provides 

• conclusions regarding the spatial resolutions that are required for the transport 
modelling and control of the fluxes for both local and regional scale inversions of the 
CO2 anthropogenic emissions 

• a detailed assessment of the local scale inversion techniques to process the XCO2 
space-borne images of plumes downwind to CO2 emission hotspots  

• an incentive to develop a specific branch dedicated to local scale inversion of plumes 
for the operational process of the future XCO2 imagery, in the near-term, based on light 
plume detection and inversion techniques 

• an encouragement to keep on developing and testing plume inversion techniques 
based on machine learning 

• a motivation to couple machine learning with city scale inversion frameworks (such as 
CCFFDAS) to bypass the atmospheric transport modelling errors at the observation 
times 

• indications of a need to increase the ability to co-assimilate observations of co-emitted 
species (CO, NO2), mainly via a better handling of the top-down information from these 
observations and from the chemistry-transport models, and a better characterization 
of the correlation of uncertainties in the inventories for CO2 and co-emitted species at 
fine spatial and temporal scales 

• an incentive to explore the potential in the simultaneous constraint on natural fluxes 
(through SIF) on the one hand and on the combined fossil and natural atmospheric 
signal (through XCO2) on the other hand by measurements from the same platform 
(CO2M) in a CCFFDAS operated at scales from city to national/continental (enriching 
the ensemble of national scale systems operated in Task 4.4) to global 

• discussions on the rationale and frameworks for the coupling between local and 
regional scale inversions, and for the coupling of local and regional inversions to the 
multi-scale IFS inversion system of the future CO2MVS 

• a positive assessment of the benchmarking protocols used at local scale, with 
recommendations to upgrade their level of complexity (up to that of the real 
observation) and extend their geographical coverage 

• insights on how to tighten the inter-comparison of national scale inversions to identify 
the inversion components that are responsible for a large part of the uncertainties in 
the estimate of the CO2 natural fluxes and CH4 emissions 

• a promotion of open source, modular and community codes for local and national scale 
inversions such as those that have been used in WP4 and WP5 to strengthen the 
transparency, reliability, robustness and operativeness of the inversions, the ability to 
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identify the main source of uncertainties, the ability to improve the system 
configurations and the establishment of standard proven approaches 

Overall, the initial objectives of WP4 were ambitious and were not completely fulfilled. In 
particular, we aimed to provide guidance on the detailed configuration of the national / regional 
inversions for the large-scale inversion of the CO2 anthropogenic emissions, owing the large 
number of models developed in the frame of T4.4. However, the large-scale inversion of the 
CO2 anthropogenic emissions using the current observation networks was a relatively novel 
development for CO2 regional-scale inversions, and was limited by the current lack of CO2 
observations dedicated to the anthropogenic emissions. That being said, the consistency of 
the results regarding the CO2 anthropogenic emissions across the different national scale 
inversions raised general guidance regarding the configuration of the future national systems 
and for the CO2MVS. The large-scale inversions of the anthropogenic CO2 emissions keep 
on being exploratory, and may finally have to connect to local scale inversions via the coupling 
of systems or scales within the multi-scale inversion prototype, or via the gradual increase in 
the spatial resolution of the national scale systems.   
The benchmarking of local scale inversion approaches led to more detailed conclusions, with 
a ranking and the assessment of the level of accuracy of the different methods depending on 
the targeted criteria for the monitoring of CO2 emission hotspots. The exploitation of the new 
generation of high (sub-km) spatial resolution imagers (whose concept is promoted by various 
private or institutional initiatives) should probably rely on the same techniques as those for the 
process of the CO2M 2 km resolution images. New benchmarking experiments (with 
simulations from models such as the LES model used in T4.1) will be required to test and 
improve the specific configurations for such high-resolution images, but the inter-comparisons 
and development conducted in WP4 could serve as a basis for such an exercise. 
WP4 brought a new list of expectations of upgrade, increase or improvement of the 
observational systems (complementing CO2M), of the spatial resolution of the transport 
models and inversions, of the characterization of the uncertainties in the inventories used as 
prior estimates of the inversions etc. and it let many important questions for local and regional 
scale inversions open. However, it also brought new and concrete insights for the development 
of the CO2MVS multi-scale inversion system and, more generally, for the atmospheric 
monitoring of the CO2 anthropogenic emissions.   
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