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1 Executive Summary 
The global CO₂ Monitoring Verification System (CO₂ MVS) of the Copernicus CO₂ Service will 
track emissions of greenhouse gases caused by human activity. This includes the combustion 
of fossil fuels which dominates the carbon balance of many developed countries, but also 
emissions caused by land-use, land-use change, and forestry (LULUCF). In many countries 
rich in forests or peatlands, or in countries intensifying their agricultural production, carbon 
emissions from managing the land are at least as large as those by combustion of fossil fuels. 
Most of those countries share two important features: the first is that deforestation is a large 
and visible problem resulting in large carbon release, the second is that these emissions are 
poorly known and national legislation is hampered by a lack of national registration and 
monitoring. This convergence signifies a great opportunity for Copernicus’ CO₂MVS to 
contribute independent, timely, and actionable information to stakeholders worldwide.  
This Deliverable sketches the contours of a framework to further exploit satellite observations 
of atmospheric species in the CO₂MVS, specifically aimed at determining emissions from 
deforestation. It builds on previous work in our community which has demonstrated the large 
added value of carbon monoxide (CO) as a tracer for combustion of biomass. We present and 
evaluate a modelling framework in which the budgets of CO₂ and CO are fully coupled, 
enabling observation-based optimisation of fire carbon emissions which are often linked to 
land use change. In the current system, these emissions are constrained only by Fire 
Radiative Power (FRP) through the Global Fire Assimilation System (GFAS), as part of both 
CAMS and the CO₂MVS. To highlight the processes that are important in a future system, we 
focused our work on a two-month period of unexpectedly large deforestation emissions in the 
Amazon in 2019, when observations from multiple platforms (OCO-2, TROPOMI, MOPITT, 
IASI, TCCON, ATTO, Amazon aircraft profiles, NOAA flasks) were available to us.  

Based on the work performed in CoCO₂ and under parallel efforts we engaged in, we come 
to the following recommendations: 

1. Invest in a more advanced process model for fire emissions in the CO₂MVS both for 
longer-term reanalyses and for operational shorter-term forecast/assimilation cycles. 
This model would consolidate the emerging capacity to link higher resolution FRP 
(e.g., VIIRS), moderate resolution burned area (e.g., Sentinel2), impact of small fires 
(e.g. GFED5), the simulated moisture state (IFS, ECland), and fuel loads as well as 
combustion completeness, in a dynamic real-time calculation of carbon emissions. 

2. Use dynamic (i.e., weather-dependent) emission factors (EFs) to speciate the total 
carbon loss to CO₂, CO, NMHC, other gaseous species, and aerosols. This allows 
multi-tracer observations to validate the EFs, and to possibly constrain EFs as part of 
the data assimilation. 

3. Use CO as pilot species in these attempts rather than NO2, as the short NO2 chemical 
lifetime and nonlinear decay close to the source complicates its interpretation even on 
scales of several kilometers, which for now remains at the edge of the capacity of a 
global CO₂MVS system. 

4. Prioritize the building of a framework for the interpretation of CO satellite observation 
(XCO). Next to fire emissions and emission factors, focus on oxidation of shorter-lived 
species emitted from (rain)forests, as well as on emissions from savanna burning. 
These emissions co-locate with deforestation fires in many tropical countries and 
monitoring is required to deliver information on annual deforestation totals to 
stakeholders. 

5. Support the development of QA/QC for an annual multiyear reanalysis of LULUCF 
emissions within the CO₂MVS. Leverage more extensive datasets not available in 
near real-time such as (a) atmospheric CO observations from NOAA, ICOS, GAW, 
etc, (b) other satellite datasets such as burned area, TROPOMI formaldehyde, but 
also upcoming biomass missions, and (c) estimates made with different bottom-up 
(bookkeeping) and top-down (other global data assimilation) systems. 



CoCO₂ 2023  
 

<CoCO2 D3.5: Multi-tracer data assimilation>  7 

2 Introduction 
2.1 Background 

The global CO₂ Monitoring Verification System (CO₂ MVS) of the Copernicus CO₂ Service  is 
envisaged to not only make use of atmospheric CO₂ observations, but also from co-emitted 
species. This is needed to distinguish various sources of CO₂ to the atmosphere, each 
associated with different human activities. The combustion of fossil fuels is one prominent 
example, and a clear target for the CO₂MVS (Balsamo et al., 2021). Land-use, land-use 
change, and forestry (LULUCF) is a second, as its net carbon emissions contribute 1.3 ± 0.7 
Gt C yr−1 (Friedlingstein et al., 2023) to the annual emissions of CO₂. This net impact is the 
result of emissions mostly from deforestation (1.9 Gt C yr−1) and uptake of CO₂ by managed 
forests (-1.3 Gt C yr−1), with carbon loss from peatland drainage and burning and wood 
harvesting contributing a smaller source (0.6 Gt C yr−1)  
These numbers come with large uncertainty though, and considerable challenges remain in 
reconciling country-level LULUCF carbon balances reported to the UNFCCC, with those 
derived from bookkeeping models (Deng et al., 2022; Grassi et al., 2023; Obermeier et al., 
2023; Schwingshackl et al., 2022). Observation-driven estimates mostly focus on direct 
carbon emissions from fires used in deforestation, and provide an additional view of land-use 
change fluxes. Each of these methods contributed to the first Global Carbon Stocktake (Byrne 
et al., 2023; McGrath et al., 2023), but their spread clearly demonstrates the need for a further 
integration of the data streams, and continuous verification of emissions in the Copernicus 
CO₂MVS. The need for improved LULUCF monitoring capacity becomes even more urgent 
with countries including negative emission strategies through reforestation in their plans to 
reach the goals of the Paris Agreement. 
Fire emissions remain a primary target for inclusion in an MVS. Currently, their monitoring 
relies primarily on remote sensing such as fire radiative power (FRP), active fire detections 
(Giglio et al., 2016) and burned area (Giglio et al., 2018). Combined with biogeochemical 
information on standing carbon stocks, fuel loads, and combustion they allow fire emission 
models of various complexity, which are widely used (Kaiser et al., 2012; Werf et al., 2017; 
Wiedinmyer et al., 2011). They allow quick assessments of unusually intense fire seasons 
such as in Brazil in 2019 (P. M. Brando et al., 2020; Paulo Brando et al., 2020) attributed to 
increased deforestation (Gatti et al., 2023). But fires smaller than the conventional MODIS 
footprint (500m) -so called small fires- are hard to detect with burned area algorithms, yet can 
contribute substantially to carbon emissions Randerson et al (2012). This is also true for 
understory fires (Morton et al., 2013) which cause forest fragmentation, mortality, and higher 
vulnerability to subsequent burning (Alencar et al., 2006; Nepstad et al., 2001). 
Additional to remote-sensing of the land-surface, atmospheric remote sensing was shown to 
provide constraints on total carbon lost from all fires across larger regions (Basso et al., 2023; 
S. Naus et al., 2022; Velde et al., 2021; Zhang et al., 2014). Column integral retrievals of CO 
(XCO) from MOPITT, IASI, and TropOMI show high signals relative to background CO from 
active fires, with both plumes and larger-scale XCO enhancement traceable to sources. This 
allows CO emissions to be optimized in a data assimilation framework, and to be converted 
into equivalent carbon emissions with assumptions on the emission ratio of CO to carbon. In 
various recent studies such as by (S. Naus et al., 2022), (Koren, 2020) but also (Peiro et al., 
2022) and (Basso et al., 2023) a two-step approach was taken. First, a CO-only inversion was 
done to optimise fire emissions. Subsequently, these CO fire emissions were converted to 
CO₂ using predetermined emissions factors, and the resulting fire CO2 emissions were used 
as a fixed fire emission in a CO₂-only inversion. 
These studies concluded that combining fire emission models driven by surface remote-
sensing, and atmospheric inversions driven by XCO, improved the estimated carbon lost from 
deforestation. The fire emission models, including GFASv1.2 currently in CAMS and the 
CO₂MVS, were found to be too low in their CO emissions, and require more carbon lost from 
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fires. We note though that in these studies, CO and CO₂ were not considered simultaneously, 
and the potentially large impact of the assumed emission ratios was acknowledged, but not 
addressed. Since then, new insights on higher resolution fuel consumption (Wees et al., 2022), 
dynamic emission factors (Vernooij et al., 2023), and the role of small fires in shaping burned 
area (Chen et al., 2023) suggest that substantial progress can be made on fire emissions 
modelling, with likely large impacts on derived CO and CO₂ budgets in a CO₂MVS. Especially 
the magnitude of savanna fires and their highly variable CO yield seems an important new 
consideration. With savanna grasses constituting mostly of C4 grasses, this signal might 
separate from deforestation (C3) in isotopic composition as well Randerson et al (2005). 
Together, this motivated the development of a multispecies data assimilation framework under 
CoCO₂.  
Here we report on the progress that was made on multi-species (specifically CO) modelling 
and data assimilation using satellite observations (e.g. OCO-2, TROPOMI, MOPITT) for 
improved source attribution of land use, land use change, and forestry (LULUCF) emissions.  
 

2.2 Scope of this deliverable 
2.2.1 Objectives of this deliverable 

This Deliverable documents a number of design choices for a CO₂MVS targeting deforestation 
emissions. It takes a specific view from the satellite monitoring perspective, and the use of CO 
as a proxy for total carbon emissions. We aim to advise on the use of a fire emission model, 
the approach towards emission factors and injection heights, and the simulation of the full CO₂ 
and CO budgets. We separate their role in 10-day operational MVS and in multi-year 
reanalyses. 

2.3 Work performed in this deliverable 
For this Deliverable we built a forward modelling system with fully coupled CO/CO₂ budgets, 
already integrated into the CarbonTracker Data Assimilation System (CTDAS) to allow 
ensemble Kalman smoothing in a follow-up project. We equipped our model with four different 
fire emission models, two different approaches for injecting fire plumes into the atmosphere, 
and employ both static and dynamic emission factors. A full evaluation of simulated CO and 
CO₂ was enabled through the sampling of XCO from MOPITT v9, TCCON profiles, aircraft 
flasks (Luciana Gatti Amazon network), surface flasks (NOAA), and in-situ time series (ATTO). 
We present simulations in various configurations and come to recommendations on the 
strategy to follow for development of the CO₂MVS. 

2.3.1 Deviations and counter measures 
(1) The original proposal mentioned NO2 from TropOMI as a possible tracer to assess fire 

emissions. Based on work in WP4, and in a separate project (SENSE4FIRES, V. 
Huijnen personal communication), we concluded that the NOx chemistry is too fast at 
the scale of global transport models (10-100km). This means that local plumes from 
combustion sources are not conserved in shape and composition, and moreover that 
the chemical lifetime of NO2, an important property to model correctly for interpretation 
of XNO2, cannot be simulated in a realistic way (Lorente et al., 2019). We therefore 
decided not to focus our TM5 efforts on this tracer, until a viable and fast 
parameterization of the nonlinear chemistry is built.  
 

(2) Although our multi-tracer DA framework is ready and operational for CO₂ and d13C, it 
is not yet tested for CO. This means we have not yet assessed the influence of window 
lengths in DA, or the optimization of a statevector and background covariance matrix 
that includes emissions as well as emission ratios. These simulations will start in 
January 2024 and will be completed under the umbrella of two follow-up projects with 
Copernicus involved (CORSO and CATRINE). 
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(3) We focused our simulations on the year 2019 instead of 2021, because the Amazonian 

fires presented a better case to evaluate and test the system. The burning of tropical 
forest should yield a substantial amount of carbon to the atmosphere that should be 
well-detectable in observations (e.g. from space). Also, both tropical forest and 
savannah burned, which is interesting from the perspective of emission ratios. Finally, 
we had a unique set of observations for 2019 available. In consultation with ECMWF 
we will decide which year to focus our multi-year DA efforts on. 
 

(4) We note that TropOMI data was sampled in the runs presented in this Deliverable, but 
the smaller data volume of MOPITT allowed faster assessment and less computational 
overhead. We thus present these results, after verifying that the comparison with the 
higher resolution TropOMI data does not alter our conclusions. If our work leads to a 
publication we will prioritize the TropOMI data. 

 

3 Modelling framework:  
3.1 Description 

The CarbonTracker Data Assimilation System (CTDAS) includes CarbonTracker Europe and 
South America, which form the foundation of the system presented here (Laan-Luijkx et al., 
2017; Peters et al., 2007; Velde et al., 2018). We further build on this system by integrating 
the CO budget, based on the work by Naus et al., (2022), which is also based on the TM5 
model, but uses long-window 4D-VAR emission optimization. CTDAS consists of several 
components that bring together observations (in-situ and satellite), a global transport model, 
and an ensemble Kalman smoother, in one python-based shell. It allows a forward modelling 
system to be built and evaluated while re-using components from existing codes, or adding 
custom capacities. Once the forward framework works satisfactorily, optimization of a flexible 
statevector is relatively straightforward to add, hence our choice for this approach. 
Developments under this Deliverable have fully completed the CTDAS forward framework for 
CO and CO₂ including evaluation presented here, while the data assimilation component is in 
progress.  

We calculate atmospheric transport of CO₂ and CO with the Tracer Model 5 Massive Parallel 
(TM5-MP, see also Huijnen et al., 2010 and Krol et al., 2001). Transport is driven by ECMWF 
reanalysis data, ERA5 (Hersbach et al., 2020). In the TM5-MP CO/CO₂ system the CO and 
CO₂ budgets are coupled. This coupling takes place through the main loss term of CO, which 
is oxidation by the hydroxyl radical (OH), producing CO₂. The lifetime of CO against OH-
removal is 2-4 weeks. This is included in our system based on pre-calculated OH-fields from 
a previous TM5-MP simulation by Myriokefalitakis et al., (2020) that used full-chemistry (also 
of CO and OH) and that was evaluated to have realistic OH-distributions. Chemical production 
of CO from NMHC and CH4 oxidation is also not calculated online but also taken from 
Myriokefalitakis et al. (2020). This allows a relatively cheap simulation of the coupled CO and 
CO₂ budgets without the need for expensive full-chemistry simulations.  CO loss by dry 
deposition is calculated online based on Ganzeveld et al., (2002). Table 1 contains an 
overview of the surface and 3D input fields and initial conditions of the system. 
The simulations presented in this report were conducted at 3°x2° global grid and on 34 vertical 
levels.  
Table 1: TM5-MP/COCO₂ setup 

Configuration 
Meteorological forcing ERA5 (Hersbach et al., 2018) 
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CO₂ priors (following CTE v2023)  

Fires GFASv1.2 : (Giuseppe et al., 2018; Kaiser et al., 
2012; Rémy et al., 2017) 

Biosphere SiB4: (K D Haynes et al., 2019; Katherine D 
Haynes et al., 2019) 

Fossil fuels GridFEDv2023.1:  (Jones et al., 2021) 

Ocean Carboscope v2022 (Rödenbeck et al., 2013) 

CO priors 

Fires GFASv1.2 : (Giuseppe et al., 2018; Kaiser et al., 
2012; Rémy et al., 2017)   

Fossil fuels MACCity: (Granier et al., 2011) 

Chemical production from CH4  TM5-MP full-chemistry run (Myriokefalitakis et 
al. 2020) Chemical production from NMVOCs 

Initial conditions 

CO₂ fields  CTE(v2023) run for the Global Carbon Project 
(Friedlingstein et al., 2023) 

CO fields CAMS EAC4: (Inness et al., 2019) 

OH fields TM5-MP full-chemistry run (Myriokefalitakis et 
al. 2020) 

 
3.2 System evaluation 

This Section includes a brief validation of a 2-month run (27/07/19 - 30-09-19). In this “base 
run” all emissions are injected at the surface and GFAS v1.2 is used as fire model.  

The bar plots presented in Fig. 1 show a comparison of CO₂ and CO mole fractions against a 
subset of NOAA background stations. For CO₂ we get close to the observations (deviations 
0.3±0.6 ppm) as expected since we start from an optimised CarbonTracker Europe field. CO 
is structurally overestimated with 9±5 ppb. This overestimation follows a known north-south 
gradient, consistent with findings by Myriokefalitakis et al. (2020). The magnitudes of these 
biases align with non-optimized results reported by Naus et al., (2022) and partly relate to 
incomplete bottom-up knowledge on the CO budget, and possibly to inaccurate OH-oxidation 
fields (Naus et al 2021; Rigby et al 2017)  
Comparisons with OCO-2 LNLG (v11) column average dry air CO₂ amount fractions (XCO₂; 
Fig. 2) reveal a mean bias of 0.3±3.1 ppm with weak signs of latitudinal dependence. 
Compared to TCCON data (Fig. 3), we find a comparable mean bias of 0.5±2.0 ppm. Further 
assessment against MOPITT V9 TIR XCO retrievals (over land) in Figure 4 indicate a mean 
bias of -16±22 ppb, which is in line with the surface observations and Naus et al. (2022).   
Overall, these results provide us with confidence in the model's performance. Nevertheless, 
they also show there is room for improvement and underline the opportunity and need for 
additional constraints from atmospheric observations. In the next sections, we dive into the 
modelling of fire emissions. 
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Figure 2: XCO₂ residuals compared to the OCO-2 L2 Lite v11r product averaged over 
5°x360°x1day bins. Observations processed to 10s averages (Crowell et al., 2019), only 
including land nadir/land glint soundings (LNLG). Small XCO₂ biases show consistency between 
the surface-based optimization and independent satellite data, but also possibly latitudinal 
differences. 

 

 

Figure 1: Boxplots with CO₂ (left) and CO (right) residuals (ppm and ppb obs-minus-
model) at NOAA background stations: Alert (ALT), Mauna Loa (MLO), Ragged Point (RPB), 
Ascension (ASC), Samoa (SMO), Cape Grim (CGO), South Pole (SPO). Simulations with 
TM5 @ glb300x200, Aug-Sep 2019. The figure shows small CO₂ residuals as expected for 
an optimized budget, and a CO overestimate by the model as reported in other studies 
using the same unoptimized set of CO emissions and production terms. 
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Figure 3: Daily average XCO₂ residuals compared to TCCON stations (GGG2020), y-axis sorted 
on latitude. 

 

 
Figure 4: XCO residuals compared to the MOPITT V9 TIR product averaged over 5°x360°x1day 
bins. The consistent model overestimate of XCO in blue colors stems from a known 
overestimate of CO given the unoptimized budget we prescribe. Positive deviations in the 
tropics likely stem from (unoptimized) biomass burning. 
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4 Sensitivity analyses and recommendations 
This Section presents a series of sensitivity experiments to illustrate the importance of several 
prior and model-design decisions in the context of a satellite driven joint CO-CO₂ inversion 
setup. 
The simulations referred to in this section were conducted globally, but this Section specifically 
pays attention to the late dry season over Amazonia in 2019. During this period, there was a 
surge in fire-activity. The co-existence of both tropical forest and savanna ecosystem fires in 
this region and during this timeframe presented a good opportunity to better quantify the role 
of different emission ratios. Moreover, we had access to a unique set of observations from 
satellites (OCO-2, MOPITT) as well as in-situ (aircraft profiles and tower). Together, these 
presented a good opportunity to test the TM5-MP/COCO₂ setup and impact of fire related 
modelling choices. Our interpretation mostly focuses on XCO and XCO₂ columns, as these 
will likely form the main data constraints on LULUCF emissions in a future CO₂MVS. 
 

4.1 Fire priors and role of small fires  
We first investigate the impact of different fire prior emission datasets on simulated CO and 
CO₂. This was done in previous publications too, mostly to conclude that differences are 
substantial and that observational constraints can agree with different products at different 
times and locations. Generally, tropical South American fire emissions in GFAS and GFED4 
were found to be too low during previous large fire events, while FINN tends towards higher 
emissions (Naus et al., 2022). 
We ran simulations with these three emission inventories, and we included a beta version of 
the new GFED5 product (Chen et al., 2023). The latter takes advantage of higher resolution 
data to capture the substantial impact of small fires, and uses updated (weather dynamic) 
emission factors for savannah burning. Fire emissions for these simulations were injected with 
IS4FIRES day/night profiles for maximum realism in assessing the impact. The main 
characteristics of the four sets of fire emissions are: 

• GFAS v1.2 is included in the CAMS forecasts and is based on near real-time retrievals 
of FRP from MODIS Terra and Aqua. Daily emission files are available since 1/1/2003 
on 0.1 degrees global resolution, and cover total carbon as well as its speciation (CO, 
NOx, ..). Emission Factors for this speciation are however static and are based on 
Andreae & Merlet (2001) data. Injection height daily data is provided by a plume rise 
model and IS4FIRES.  

• GFED4S is based on burned area from MODIS (Collection 5.1) and fuel consumption 
based on the Carnegie Ames Stanford Approach model (Van der Werf et al., 2017). It 
supersedes GFED3 which was used to constrain FRP to carbon emission ratios in 
GFAS. It covers the 1997 to the present time period and is available on a 0.25 degree 
global grid using emission factors mostly from Akagi et al., (2011). Its temporal 
resolution is monthly but active fire detections are used to move from monthly to daily 
(2-daily in the tropics). 

• GFED5 (beta) builds on GFED4s but its small fire algorithm is now constrained by 
moderate resolution burned area datasets (S2, Landsat) for selected regions (Chen et 
al., 2023) which roughly leads to a doubling of global burned area compared to MODIS 
collection 6 data (Giglio et al., 2018). Fuel consumption is based on a simplified version 
of the CASA model (Van Wees et al., 2022) running at 500m. Due to the statistical 
nature of the small fire algorithm both datasets are merged to 0.25 degree spatial 
resolution with biome-level burned area within that grid cell multiplied by biome-level 
fuel consumption. The conversion from a monthly to a daily timestep is similar to that 
used in GFED4s.  
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• FINN v2.5 uses active fire detections from MODIS and VIIRS to calculate emissions 
at 1x1 km resolution. Active fire detections are converted to burned area using biome-
level scalars and fuel consumption is derived from van Leeuwen et al., (2014) and is 
thus solely biome-dependent. Global total carbon emissions from FINN2.5 are 
substantially higher than previous versions (Wiedinmyer et al., 2023). 

A substantial difference in XCO stems from the choice of fire model, which makes it likely that 
XCO retrievals can improve our knowledge of deforestation emissions. Consistent with Fig. 4, 
the boxplots in Fig. 5 show differences of up to 10 ppb in XCO residuals against MOPITT land-
only data points globally, in not just their spread, but also their means. Importantly, the total 
residuals shown have spatial and temporal structure, due to the underlying differences in 
emissions.   
 

 
Figure 5: XCO residuals (obs-minus-model) for simulations with different fire priors compared to 
MOPITT V9 TIR retrievals over land (global) between 25/08 and 30/09. 

Interestingly, fire emissions at first glance appear quite similar in spatial patterns owing to a 
large similarity in the underlying satellite observations of FRP, active fires, or burned area. But 
the absolute and relative intensity of the CO emissions vary, as shown in Fig. 6. This suggests 
that data assimilation of XCO will mostly be useful to constrain the emission intensity across 
time, and across different burning regions. In addition, the total fire CO emissions (and by 
inference also carbon emissions) will be a target for optimization, as the totals from e.g., 
FINNv2.5 are much larger than from GFASv1.2 over the period shown. 
 

 
Figure 6: Fire CO emissions over Amazonia between 27/07 and 30/09 per 1°x1° gridbox in each 
of the tested fire inventories: (a) GFAS v1.2, (b) GFED4.1s, (c) GFED5 beta, and (d) FINN v.2.5. 

a b c d 
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Figure 7: (a) Mean XCO columns over Amazonia between 25/08 and 30/09 from MOPITT TIR v9 
and respective (b) number of observations per 1°x1° bin. The subsequent panels show XCO 
residuals (note: model-minus-obs here) for simulations with (c) GFAS v1.2, (d) GFED4.1s, (e) 
GFED5 beta, and (f) FINNv2.5 as fire emission model. 

The large range of emissions shown in Figure 6 also lead to strongly contrasting XCO patterns 
in the atmosphere over Amazonia. Figure 7 shows the residual of XCO over Amazonia 
averaged over 5 weeks during the 2019 dry season for each of the fire emission models, given 
the same transport with the TM5 model. The FINNv2.5 modeled columns (panel f) are too high 
by several 10’s of ppbs over the full domain, clearly separating them from the GFED4s (panel 
d) simulations which rather show a dipole of too high columns in the eastern Amazon and too 
low columns in the central Amazon. GFASv1.2 is generally too low compared to MOPITT in 
these months, fully consistent with earlier findings (see Figure 5 of Naus et al., 2022). GFED5 
beta has smallest mean residuals and the highest spatial correlation coefficient (R2=0.81) of 
the set. This suggests that its incorporation of small fires (Chen et al., 2023) and updated 
emission factors for savanna burning (Vernooij et al., 2023) relative to GFED4s could be a 
strong driver of more realistic CO fire emissions. Future analyses will investigate the role of 
small fires, here we further investigate the role of the emission factors.  
Recommendation: Invest in building the best possible deforestation + fire emissions model to 
provide a starting point for atmospheric data assimilation. This model should include the 
influence of small fires and use high-resolution FRP, or active fires in operational mode, and 
burned area in reanalysis mode.  Machine-learning can link FRP or active fires to emissions 
from this model, allowing a fast transfer of information.      

4.2 Emission Factors 
When using XCO as observations in the CO₂MVS, the conversion of total CO emissions to 
carbon release (our target variable) will crucially hinge on the Emission Factors (EFs) used to 
partition the fuel consumed (in kgC) into various species. When interpreted as resulting ratios 
of tracers in the atmosphere these are also referred to as emission ratios (ERs). Traditionally, 
different ERs have been associated with different land-use types and fire types and later on 
(Andreae & Merlet, 2001) also with different fuel wetness which is a function of recent weather 
(Leeuwen et al., 2013; Vernooij et al., 2023). ERs can thus vary over space and time and 
influence observed XCO and XCO₂.  
Figure 8 shows the ERs associated with fires in GFAS and GFED5 over our study domain and 
period. While overall patterns are similar at first sight due to the underlying land-use types, 

c d e f 
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closer inspection shows (a) many more fires with low ERs in GFED5 due to the detection of 
small fires mostly in non-forest landscapes, and (b) high ERs typical of moist forest (>80 
ppb/ppm) are flanked by low ERs typical of low vegetation (<60 ppb/ppm) in deforestation 
areas in the central Amazon, lowering mean ERs in the coarsened 0.25°x0.25° map of 
GFED5. Moreover, GFED5 ERs have a standard deviation that can be as large as ±15 
ppb/ppm as they vary over time due to moisture conditions and other parameters changing for 
savanna fires. 
  

 

Figure 8: CO/CO₂ emission ratios (ERs) for fires that occurred between 27/07 and 31/09 in (a) 
GFASv1.2 and (b) GFED 5 beta on their native resolutions (0.1°x0.1° and 0.25°x0.25° 
respectively). Panel (c) shows the standard deviation for (b). The crosses in panel (b) and (c) 
indicate the locations of time-varying ratios plotted in Fig. 9. 

These temporal variations are further detailed in Fig. 9, which shows the ER timeseries over 
four locations marker in Fig 8c, each classified as savannah. For reference, the constant ER 
used in GFASv1.2 (58 ppb/ppm) for all savanna fires is shown as a horizontal line. Clearly, 
variations in ER matter. For example in the blue boxes corresponding to the southernmost 
location, the ERs increase by nearly 10% in a few weeks’ time. When minimizing the difference 
between observed and simulated XCO, not accounting for the ER increase would require 10% 
higher carbon emissions in the latter part of the month instead. Similarly, a systematic 
deviation from the fixed ER would bias carbon emission estimates proportionally, as the ER 
(or EF if referring to emissions) is a multiplicative term between carbon lost and CO emitted. 
 

 
Figure 9: GFED5 beta CO/CO₂ emission ratio timeseries for gridboxes classified as savanna 
(11.5°S, 50.0°W; green), (11.0°S, 46.0°W; orange), (16.0°S, 55.5°W; blue), and (15.0°S, 48.0°W; 
red). The middle horizontal grey dashed lines represent the currently implemented fixed ERs for 
savanna burning in GFASv1.2 (SA GFASv1.2) according to Kaiser et al. (2012). The upper (SA 
exp. A) and lower (SA exp. B) dashed lines are the ERs used in the sensitivity experiment 
presented in Figure 10.  

Errors in EFs on the fire emissions propagate through the atmosphere and can have non-local 
effects that may bias carbon emission estimates downwind of the regions. To illustrate this, 
we conducted an experiment in which the ERs for savanna (SA) and tropical forest (TF) fires 
were changed to the respective low/high end of their literature estimate as in Table 2. Total 
emitted carbon was kept constant.  

a b c 
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Table 2: Description of emission ratio sensitivity experiments. 

Experiments 
 Experiment A Experiment B 

ERSA Low High 

ERTF High Low  

CO/CO₂ emission ratios [ppb/ppm]:  
 ERSA ERTF 

Default: GFAS v1.2 
(Andreae & Merlet; 2001) 

58 98 

Low 44 60 

High 89 145 

 

 
Figure 10:  Change in XCO columns for simulations with adjusted emission factors compared to 
the default. Scenario A: ERSA low, ERTF high (a), Scenario B: ERSA high, ERTF down (b). 

The difference in XCO between the default and experiment A (low SA/high TF) and B (high 
SA/low TF) is illustrated in Fig. 10 above. Over large areas of the domain the colours are 
inverted, as the savanna fires in the north-eastern part of the domain emit less or more CO 
than the default, and the tropical forest vice versa. But on the savanna/forest borders (e.g., 
15°S 55°W) both experiments show higher columns than the default, with a red plume 
extending to the south of the domain. This ‘mixed’ zone moves with the synoptic flow and 
signifies the region where XCO is likely to be sensitive specifically to regional ER differences.  
Recommendation:  Move towards a fire model with dynamic (i.e., weather-dependent) 
emission factors (EFs) to speciate the total carbon loss to CO₂, CO, NMHC, other gaseous 
species, and aerosols. Develop capacity to vary or constrain EFs as part of the data 
assimilation for fire carbon emissions. Machine-learning of EF variability can provide a fast 
estimate to use in operational CO₂MVS and should be pursued. 
 

4.3 Injection heights 
In this section, we test the sensitivity of simulated XCO for injection heights. It is well 
established that injection heights play a key role in the subsequent transport of the emitted 
gases and aerosol (Kahn et al., 2008; M. Krol et al., 2013; Martin et al., 2010; Rémy et al., 
2017; Sofiev et al., 2012, 2013). Plume rise of biomass burning plumes is determined by FRP, 
but also by the atmospheric stability and moisture content (Freitas et al., 2009; Virgilio et al., 
2019).  

a b 
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We tested the impact of different emissions heights in the comparison between simulated XCO 
and the MOPITT V9 TIR product. Three cases were considered: Scenario “Surface” emitted 
all biomass burning at the surface, scenario “IS4FIRES whole day” used a single emission 
profile per day from IS4FIRES (Sofiev et al., 2012), and scenario “IS4FIRES day/night” 
employed different emission profiles for day and night. Figure 11 shows that the impact on the 
residuals is minor, the reason being that columns are being compared. Obviously, the 
secondary effect of the different transport pathways associated with the different main 
emission altitudes plays only a small role. 

 
Figure 11: XCO residuals for simulations with different injection heights compared to MOPITT V9 
TIR retrievals over land (global) between 25/08 and 30/09. 

 
Figure 12: Spatial difference in XCO over Amazonia for simulations with injection profiles 
compared to emissions injected at the surface. R2 and RMSE show the performance of each run 
compared to MOPITT V9 TIR. 

This is further illustrated in Fig. 12, which shows the spatial impact of emitting biomass burning 
emissions using different profiles. The figure shows differences in the XCO column with 
respect to the simulation that emits at the surface. Locally, differences can still be up to 20 
ppb in the column, but mean statistics with respect to MOPITT hardly change. 
As expected, differences are larger at specific altitudes or when profiles are compared, 
specifically near large emissions. Fig. 13 displays a comparison of CO enhancements with 
results from an airplane-derived profile near Tefe (Amazonas state), a site that if often 
influence by biomass burning plumes. The CO enhancements shown in the figure were 
calculated by subtracting a background based on Ragged Point, Barbados. This is one of the 
available observations for which a clear biomass burning signal was present. 
The calculated enhancements in the model have the correct profile shape, but the profiles are 
less steep compared to the aircraft observations. For this specific case, differences of almost 
10 ppb are found between the simulations, but the simulated profiles have similar shapes. 
Thus, the profile shape is governed by transport processes that occurred after emission. 
Moreover, differences with the observations are larger than between the different simulations, 
likely due to the local characteristics of the observations. Note that the model resolution is 
roughly 100 km.  
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Figure 13: Comparison of CO enhancements from simulations with different injection heights to 
a vertical profile near Tefe, Brazil. CO observations courtesy of Luciana Gatti, Lagee lab, INPE, 
Brazil.  

From this sensitivity simulations we conclude that profiles that are used to distribute biomass 
burning in the vertical are not a critical factor when comparing to satellite XCO columns from 
MOPITT TIR products. Part of this low sensitivity might be due to the limited sensitivity of 
MOPITT TIR to surface CO, and the fact that the model profiles are convolved with the 
averaging kernel when they are compared to MOPITT. The sensitivity might be larger with the 
TROPOMI XCO, which has higher sensitivity to surface CO (Leguijt et al., 2023). 
Likely, the current implementation in GFAS (Rémy et al., 2017) provides a reasonable 
estimate for the vertical distribution of biomass burning emissions. Further optimization of 
these profiles, e.g. by adding the emission profile in the state vector, is therefore not 
recommended. 
Recommendation:  Simulated XCO shows low sensitivity to the vertical emission distribution, 
so improving injection heights and biomass burning emissions profiles should not be given 
high priority when the aim is constraining continental-scale carbon cycle dynamics. 
 

4.4 NMHCs 
Chemical CO production from CH4 and NMHC oxidation is an important source term in the CO 
budget (~50-60%; e.g. (Bo Zheng et al., 2019)). Globally, roughly a quarter of this contribution 
is related to oxidation of short-living NMHCs. However, over densely vegetated regions such 
as Amazonia, the role of this secondary CO source becomes more important. NMHC 
oxidation, mainly from isoprene and terpenes, has a strong seasonality, related to (drought-) 
stress conditions. These are likely to occur in advance of – or during – fire-periods. In addition, 
combustion of biomass also releases NMHCs, which means NMHC oxidation CO is spatio-
temporally correlated with fires. This implies that care is needed when observed CO 
enhancements are used to infer CO and CO₂ emission from fires.  
An intermediate in the oxidation chain from Volatile Organic Compounds (VOCs) to CO is 
formaldehyde (CH2O), which is observed by satellite instruments (Smedt et al., 2021; Zhu et 
al., 2016), albeit with small signals.  
We quantify the contribution of secondary CO production over South America, an area with 
large emissions of NMHCs, but low contributions from industrial emissions. We calculated 
XCO enhancements compared to a mean background column over Patagonia.  Fig. 14, shows 
that total XCO enhancements are indeed not only determined by fires (Fig. 14c), but that there 
is a significant contribution from the CO production term (Fig. 14b; CH4 and NMHC oxidation). 

Observed 
Surface 
IS4FIRES whole day mean 
IS4FIRES day/night 
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Averaged over the domain, this oxidation term by far has the strongest contribution to the total 
columns and cannot be ignored. 
Thus, there is a substantial risk to misinterpret the CO from NMVOC oxidation as direct CO 
emissions from biomass burning. A LULUCF component of a CO₂MVS that exploits XCO 
products to estimate biomass CO₂ emission, should therefore account for this important term. 
 

 
Figure 14: (a) Total XCO enhancements during MOPITT V9 overpasses over Amazonia between 
20/09 and 23/09 and contributions from (b) NMHCs and (c) fires. The stacked column (d) shows 
the domain and time average CO budget component contributions.  

As seen in figure 14, the NMVOC-CO contribution is relatively smooth compared to the 
contribution from biomass burning. This could provide a way to separate the two contributions. 
Other ways to obtain information about the NMHC-CO production are: 

• Full chemistry simulations that account for the emissions and chemical fate of VOCs 
could provide an estimate. In fact, we used such an estimate in our simulations. 
However, both VOC emissions and the subsequent chemistry are highly uncertain. 
These uncertainties are amplified by the tight coupling between VOC abundance and 
OH, the main sink for CO (Ringsdorf et al., 2023). 

• Satellite observations of isoprene (Wells et al., 2020) and formaldehyde (De Smedt et 
al., 2021; Zhu et al., 2016) might provide constraints on secondary CO production. 

• Isotopic information of CO can be used to infer the contribution of secondary CO 
production (Dasari et al., 2021; Vimont et al., 2019). 

These methods are an area of active research, and an optimal strategy is currently hard to 
define. A multi-species inversion system (B Zheng et al., 2019), assimilating satellite 
information from the coupled atmospheric species CO, CH4, and CH2O, likely provides a good 
starting point.   
We focused here on the Amazon, and the situation is likely quite different for boreal fires or 
Asian peat fires. Given the important contribution of LULUCF emissions, further research in 
this field is certainly needed. CO satellite products offer the best potential to constrain LULUCF 
emissions, mostly because their long heritage and the suitable lifetime of CO that leaves clear 
imprints of biomass burning in the atmosphere. However, uncertainties from secondary 
production of CO in the atmosphere should be dealt with in an appropriate way. 
 
Recommendation:  Explore methods to efficiently model and constrain the role of secondary 
CO production from NMHC oxidation. 
 

4.5 Budget coupling: CO₂ production from CO  
The CO₂ and CO budgets share fossil fuels and biomass burning combustion as source terms. 
In a CO₂ only version, CO₂ is generally counted as total carbon and thus absorbs the fraction 
emitted as CO or NMHC, assuming it is converted to CO₂ within several weeks. In our system 
we instead speciate carbon to both CO₂ and CO and let the conversion to CO₂ occur as a 

a b c d 
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function of the OH abundance in the atmosphere. Figure 15 quantifies what we call the “direct” 
effect of the coupling, which is that less CO₂ is released at the surface (and more CO, not 
shown). The figure illustrates the amount of CO₂ (in ppm) near the surface that is not emitted 
and thus not part of a model-observation comparison for CO₂. Although this is a small fraction 
of total carbon, locally this can be a several ppm difference at the surface, which is large 
enough to matter when interpreting local surface CO₂ observations. This is especially true for 
fires and thus for land-use change monitoring with surface observations. 

 
Figure 15: The "direct" impact of budget coupling for fossil fuels (left) and fires (right). The fields 
show amount fractions of CO₂ near the surface that would be emitted as CO₂, but now are 
“moved to CO”.  

After this carbon is emitted as CO, it is transported away from the source and oxidised to 
produce CO₂, which we see as the “secondary” effect. The amount of CO₂ produced from CO, 
in column space is presented in Fig 16 for a simulation of one week. It shows small impacts 
that would be beyond the capacity to distinguish in observed XCO₂. Of course, this CO-derived 
CO₂ will accumulate over time but at the same time disperse and only add to the background 
gradients of CO₂, as illustrated for example in (Suntharalingam et al., 2005). At that time a 
large-scale inversion such as foreseen in reanalysis mode would show minor sensitivity to this 
coupling, while a short-term inversion as foreseen in operational mode would not be sensitive 
to the induced gradients.   
 

 
Figure 16: Change in XCO₂ related to CO₂ production  from CO oxidation over 7days from (last 
week of run 21st - 28th September). 

Recommendation:  The budget coupling of CO₂ and CO matters more to emissions and 
surface CO₂ abundances than to XCO₂. The CO₂ production from CO should be considered 
explicitly mostly in the reanalysis mode when large-scale gradients are of concern to derive 
continental-scale emissions. Otherwise, the “direct” effect on emissions is most important for 
LULUCF monitoring. 
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5 Future outlook and recommendations 
In this section we discuss the main recommendations that ensued from our work under 
CoCO₂. These are focussed on the goal to verify anthropogenic greenhouse gas emissions 
with Copernicus’ CO₂-MVS system, with a specific focus towards emissions resulting from 
land-use change and forestry, as well as from fires. In many tropical countries these are highly 
connected through the use of fires in the deforestation process. In other regions of the world 
fires can be part of the natural landscape, or also caused by humans and hence tracing 
biomass burning emissions in the CO₂-MVS will be an indispensable part of simulating the full 
carbon cycle. This also means that inherent uncertainty in modelling biomass burning 
emissions, plume dispersion, and chemical transformations needs a place in the CO₂-MVS 
design. 
An important recommendation resulting from our work is therefore to invest time and resources 
in building a state-of-the-art biomass burning model. There are two tracks of development for 
this:  
(1) is the further development (beyond the current GFAS1.2 system) of a near real-time fire 
emission modelling capacity that depends only on a combination of Fire Radiative Power (such 
as directly available from VIIRS) and NWP variables from IFS. Such a model could be based 
on machine-learning of available FRP against historical emissions of GFED5, leveraging the 
integrating power of FRP over burned area, fuel availability and combustion completeness. 
VIIRS high-resolution FRP moreover forms a surprisingly good alternative for burned area as 
long as cloud obscuration is limited (see van Wees et al., 2022, PhD thesis and as used in 
FINNv2.5). The NRT fire model would provide first-guess carbon loss, as well as sources of 
co-emitted species to the CO₂MVS. This preserves the biogeochemical details encapsulated 
in GFED, while delivering the NRT capacity needed in CO₂MVS and NWP forecasts.  
Along a similar vein, EFs in savannas were machine-learned based on observations and 
various global weather variables from ERA5, or derived indices (Vernooij et al 2023, PhD 
thesis). A trained model combined with the NWP variables from IFS would allow more dynamic 
EFs to quickly be available in the CO₂MVS and given the large amount of new EF data in 
temperate regions there is potential to introduce dynamic emission factors beyond only the 
savanna biome. 
(2) is the inclusion of biomass burning carbon loss in the longer-term reanalyses of the 
CO₂MVS. Rather than machine-learned emissions, here a more complete description of the 
carbon pools and their coupling to the state of the land-surface can be leveraged. Fuel 
availability and consumption depend on the vegetation state with a large hysteresis because 
of seasonal growth (grasses), seasonal moisture balances (grasses, temperate forests), and 
even decadal management (standing stocks and litter). Emissions of CO₂, aerosols, and CO 
depend on combustion completeness and emission factors that similarly vary with weather 
conditions. And the post-fire state of the landscape in terms of remaining carbon stocks, 
ensuing regrowth, but also the surface energy balance impact NWP. Such variables can be 
co-constrained using the ECLand framework to simulate vegetation state (carbon stocks, 
labile pools, litter, wetness) and surface characteristics (temperature, moisture, greenness).  
The design of a biomass burning model that provides these couplings should furthermore 
account strongly for small fires, which have proven to double burned area globally and possibly 
add about 50% to total carbon emissions (Chen et al., 2023). Given that VIIRS provides 
excellent capabilities to detect also these smaller fires an updated fire model in CAMS will 
provide more realistic emission estimates, also in NRT. They can also contribute heavily to 
local air pollution, and investments in fire modelling thus offer synergy with developments in 
CAMS.  
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An outlook on such expanded fire emissions MVS capacity, beyond that presented based on 
our CO/CO₂ modelling efforts, is provided below. 

5.1 Other observational constraints 
CO observations, especially space-based, have demonstrated capacity to constrain fire 
carbon emissions (Zheng et al., 2021; Naus et al., 2022) derived from biogeochemical 
modelling and observations of burned area or FRP. Mostly, observations from MOPITT and 
IASI suggest higher emission totals globally. TROPOMI CO has been used mostly in regional 
studies so far (Velde et al., 2021) but will likely become the main source of XCO data for the 
post-2017 era. Its smaller footprint will likely help to better filter retrievals affected by smoke 
and aerosols, of which the influence on retrievals closest to large sources is unknown also for 
the coarser instruments used thus far. TROPOMI additionally allows retrievals of 
formaldehyde (HCHO) which can help to constrain the VOC-derived production of CO, which 
we demonstrated here to be a significant source in the CO-budget, with uncertainties that can 
impact biomass burning emission estimates from XCO. Whether the VOC-HCHO-CO relation 
must be modeled in full-chemistry, or if it can be machine-learned and parameterized is a 
question for follow-up research. 

Similar efforts to parameterize the NO2-CO-CO₂ relationships in biomass burning plumes are 
underway, for example in the HE CORSO project. First results have suggested that simulating 
the NO2 lifetime at coarse model resolutions remains a bottleneck. Global simulations at 
~40km resolution insufficiently captured the plume lifetime to use emission ratios from 
NO2/NO and CO₂/CO derived from satellite products. In WP4 of CoCO₂ it was similarly 
demonstrated that NOx chemistry in plumes leads to strongly non-linear tracer ratios at scales 
of 0.1-10km. This is mostly below the resolution targeted with the CO₂-MVS, as well as the 
resolution of TROPOMI and CO₂-M. It is likely that the interpretation of NOx from fires thus 
requires other modelling approaches, but this was not investigated under this Deliverable. 
 

5.2 Data assimilation 
To independently estimate the land-use change carbon sources in the Copernicus CO₂MVS, 
we foresee two pathways:  

(1) is using the daily operational system in which the atmospheric state of CO and CO₂ are 
adjusted together with the surface emissions of CO from fires within the time span of the 24-
hour window and the background covariance matrix spanning at least 3 days (based on our 
experiences with a 3-day window this seems a robust span). The driver data will be mostly 
TROPOMI XCO in combination with VIIRS Active Fires to optimize biomass burning CO 
emissions. These are converted to carbon emissions using machine-learned fuel consumption 
and EFs driven by NWP variables. Prior fire emissions are based on first-guess estimates 
derived from machine-learning of emissions from a full biogeochemical model. Small fires are 
accounted for through a similar training on existing datasets. Fire carbon release does not 
directly impact the land-surface characteristics (albedo, LAI, carbon stocks, vegetation type). 
CO production from CH4 is done online using fixed OH fields from CAMS. Other terms of the 
CO budget (fossil emissions, NMHC-production) are prescribed from pre-calculated 
climatologies taken from CAMS or from a similar large-scale chemistry model. 
(2) is an annual reanalysis of land-use change emissions. In addition to XCO (TROPOMI, 
MOPITT, and IASI) this reanalysis uses well-calibrated surface and free tropospheric flask 
sample CO observations. Fire emissions are modeled based on biogeochemical models that 
track carbon stocks and fuel availability as well as wetness, preferably within ECLand. Small 
fires (i.e., below 300m in size and detected from hi-res visible imagery) are explicitly included 
in these first guess estimates. The DA window is extended to at least 3 weeks (based on the 
chemical lifetime and transport time in/from tropical regions), with the statevector containing 
daily CO emissions from fires as well as weekly mean EFs across various large PFT’s. Smaller 
scale EF-variability is modeled based on ECLand and NWP variables. Fires affect carbon 
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stocks and hence regrowth in ECLand, as well as vegetation type, albedo, and LAI during the 
reanalysis. Once sufficient good quality XCO₂ data is available (e.g. from CO₂M), it can 
additionally inform on carbon fire emissions in this framework. Other parts of the CO budget 
are co-optimized in the reanalysis to make sure that the global budget closes well.  

Validation of both can be against not used flask, campaign, or satellite data of CO and CO₂, 
and possibly against NO2 and formaldehyde on larger scales. A promising avenue is also 
Aerosol Optical Depth, and possibly data from upcoming biomass satellite datasets. Finally, 
we mention that alternative estimates performed with other transport models, and different DA 
approaches would help for continuing R&D on the CO₂-MVS. 
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