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1 Executive Summary

This document reports on the work performed in Task 5.6 within the work package WP5
‘Connecting scales and uncertainties’ of the CoCO2: Prototype system for a Copernicus CO-
service project. The aim of Task 5.6 ‘Assessment of uncertainties in European inversion of
CO, and CH4 is essentially to perform multi-model intercomparisons to quantify the
uncertainty range in European CO; and CH, land-atmosphere fluxes from atmospheric
inversions. The work in this task also includes preparing a roadmap on benchmark
atmospheric transport model inversions.

For CO. an analysis of the impact of changing various components (foreground and
background atmospheric transport model, prior uncertainty specification) in an atmospheric
tracer transport inversion on posterior CO; fluxes was performed. For this, we used two such
inversion systems (CSR and LUMIA) over Europe for the year 2018. The objective is to identify
the dominant driver of uncertainty in the posterior CO, estimates. Two Lagrangian transport
models (STILT and FLEXPART) were used to assess the impact of foreground (regional)
transport on posterior CO; fluxes. Two Eulerian transport models (TM3 and TM5) were used
to quantify the impact of the background (lateral boundary conditions) on posterior CO; fluxes,
and finally two different schemes to set spatio-temporal prior uncertainties as employed by
LUMIA and CSR were used to quantify the impact on posterior CO; fluxes. These variations
lead to an ensemble of eight inversions. The results from this ensemble show a large spread
in the annual terrestrial posterior fluxes over the whole domain of 0.92 PgC yr? ranging
between -0.72 and 0.20 PgC yr™%, which is almost twice as large as the assumed prior
uncertainty of 0.47 PgC yr. The largest part of the spread in the results could be accounted
for by the regional transport model component. The global transport models used for providing
background contribution were responsible for a smaller part of the spread but with a quasi-
constant offset, hence acting like a bias. The differences arising from using different inversion
systems (i.e. prior uncertainty specifications) were the smallest.

In the CHy,4 inversion intercomparison eight different atmospheric transport inversion systems
have been used. The range in posterior fluxes obtained from the inversions is currently too
large to provide a strong constraint on national emissions. The only countries for which the
inversions deviate systematically from the prior are The Netherlands and Italy, where the
inventory reports respectively lower and higher emissions than the inversions. In the case of
the Netherlands this may include the region of intensive agriculture (extending into north-
western Germany ). Across most measurement sites the models perform quite well in
capturing the timing of mixing ratio anomalies, an important requirement for emission
estimation. However, the signal of emissions in the mixing ratio time series is most evident in
the amplitude of the observed variability. These amplitudes also vary between models, making
the inversion-derived emission adjustments sensitive to transport model uncertainty. A logical
next step would be to further investigate such uncertainties using simulations of 222Rn (which
is also proposed in the roadmap as an essential part of the benchmarking system). So far,
however, the number of participants who provided information on radon is unfortunately too
low for such an assessment.

The results obtained here from the intercomparisons emphasize the need for a robust
evaluation of atmospheric transport inversion systems. Hence, a roadmap for setting up a
community benchmarking system is presented. Since the posterior emissions estimates from
atmospheric transport inversions cannot be directly validated, such a benchmarking system
needs to include a) a range of different observations and b) the possibility of comparing results
from different inversion systems to each other (i.e. a cross-comparison of inversion results).

D5.6 Quantification of uncertainty ranges from multi-model inversions 6
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2 Introduction

To support EU countries in assessing their progress for reaching their targets agreed in the
Paris Agreement, the European Commission is supporting the development of an
anthropogenic CO; emissions monitoring and verification capacity. Such a capacity would
deliver consistent and reliable information to support policy- and decision-making processes.

The CoCO2 Coordination and Support Action builds the prototype system for such a European
monitoring and verification capacity. Is the continuation of an initiative to explore the
development of a European system to monitor human activity related carbon dioxide (COy)
emissions across the world — the CO, Human Emissions (CHE) project

The main objective of CoCO2 is to perform R&D activities identified as a need in the CHE
project and strongly recommended by the European Commission's CO2 monitoring Task
Force. The activities shall sustain the development of a European capacity for monitoring
anthropogenic CO; emissions. The activities will address all components of the system with
the aim to have prototype systems at the required spatial scales ready by the end of the project
as input for the foreseen Copernicus CO; service element.

The overall objective of WP5 is to improve the representation of inversion uncertainties, which
are important not only for the uncertainty of the generated flux estimates, but also to determine
the weight that different elements of information that are used should receive. Also, recent
atmospheric tracer transport inverse modelling intercomparison activities, such as the
EUROCOM project, focusing on the regional European CO; inversions, have shown that there
is a broad range in the posterior estimates of the net European terrestrial CO, fluxes (Monteil
et al., 2020).

2.2.1 Objectives of this deliverable

The objective of Task 5.6 is to investigate ways to evaluate posterior estimates and their
uncertainties by means of model inter-comparisons both for CO, and CH4 as well as the
preparation of a roadmap for a dedicated benchmarking system for atmospheric inversions.

2.2.2 Work performed in this deliverable

The WP5 team has performed transport inversion experiments for CO, and CH. and
coordinated the intercomparison of these inversion experiments. In addition, the task has
prepared a roadmap for setting up a benchmarking system for atmospheric inversions and
illustrating the benchmarking concept with some prototype results.

The inversions systems participating in the intercomparison include:

LUMIA (ULUND, both CO, and CH.)
CarboScope Regional (MPG, both CO; and CHa)
WRF-STILT (NIM, CH4)

CIF-FLEXPART (NILU, CH4)

CIF-CHIMERE (LSCE, CH4)

NIES-FLEXPART (NIES, CH4)

TM5 CT-Europe (FMI, CH4)

ICONDA (EMPA, CH4)

D5.6 Quantification of uncertainty ranges from multi-model inversions 7
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The work on the CO,transport inversion intercomparison has already been published in
Munassar et al. (2023). Therefore, only a brief summary is given here in Section 3 of this
deliverable report and the full paper is included as an appendix (Section 7).

2.2.3 Deviations and counter measures

No deviations were encountered.

3 Assessment of uncertainties in European inversion of
CO2

The work performed here is based on the outcome of the regional atmospheric CO- transport
inversion intercomparison project EUROCOM (Monteil et al., 2020). Within the EUROCOM
project six state-of-the-art inversion systems provided posterior estimates of the net European
terrestrial CO; fluxes. The ensemble of regional inversions suggest that European ecosystems
are a relatively small sink of —0.09 PgC yr™* (ensemble mean posterior estimate of the 2006-
2015 average net flux), however with values from individual inversion systems ranging from a
net source of 0.28 PgC yr ! to a net sink of -0.41 PgC yrt. Overall, the range of posterior
estimates from the inversions (0.7 Pg C yr-1) is narrower than that of the priors (1.06 Pg C
yrt compared to 0.7 PgC yr?) but the convergence of the regional inversions at this scale is
not better than that obtained in state-of-the-art global inversions.

As part of the CoCO2 project we now calculated posterior fluxes from an ensemble based on
two of the inversion systems that participated in EUROCOM to better quantify the sources of
uncertainties in the posterior estimates. While in the EUROCOM project the intercomparison
protocol was, on purpose, rather loose to explore the full range of reasonable posterior flux
estimates, we defined a very strict protocol for the ensemble used here. In detail, we tested
the impact of various components in the setup of regional atmospheric CO; inversion systems
through a set of inversions that differ only by the component in question in the atmospheric
transport inversion system. The components we looked at are the atmospheric transport
models used for calculating both the foreground and the background response, as well as the
inversion system, i.e., the specification of prior uncertainties. For this, we performed an
ensemble of eight inversions using the two regional atmospheric transport inversion systems
LUMIA (Monteil and Scholze, 2021) and CarboScope-Regional (CSR; Kountouris et al., 2018;
Munassar et al., 2022). The ensemble of inversions consists of the following configurations
(also shown in Table 1):

e In its default configuration, LUMIA relies on the FLEXPART Lagrangian particle
dispersion model to compute CO, transport within Europe (foreground), with lateral
boundary conditions taken from a TM5-4DVAR simulation. These boundary conditions
are provided in the form of time series of “background” concentrations (i.e., far-field
contributions), computed directly at the observation sites by the TM5 model, using the
2-step inversion scheme of Rddenbeck et al. (2009). The temporal shape of the prior
terrestrial flux uncertainty is determined as a weekly uncertainty from the standard
deviation of NEE. For the spatial domain, a Gaussian function of the spatial correlation
decay is applied to the prior uncertainty structure with a spatial length scale of 500 km.
These values are then scaled such that the prior flux uncertainty over the full domain
of Europe is 0.47 PgC yr. That corresponds to experiment LF5 in Table 1.

e CSR, by default uses the STILT Lagrangian particle dispersion model to compute the
foreground with the background provided by TM3 from the global CarboScope
following also the 2-step scheme. In CSR the same total European prior flux
uncertainty of 0.47 PgC yr~! is used, however, this uncertainty is uniformly distributed
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spatially and temporally over the domain using a hyperbolic function with correlation
length scales chosen to be 66.4 km spatially and 30 d temporally, respectively. That
corresponds to experiment CS3 in Table 1.

¢ In addition, LUMIA inversions were performed using the Lagrangian transport model
STILT, as an alternative to FLEXPART, and using background concentrations from
global (TM3-based) CarboScope inversions, as an alternative to TM5-4DVAR. And
vice versa, CSR inversions were performed using FLEXPART to compute the
foreground and using background concentrations from a TM5-4DVAR simulation.

e One additional experiment (not listed in Table 1) was performed with LUMIA using
entirely the same specification as in CSR (STILT foreground, TM3 background and flat
hyperbolic prior uncertainties) and compared against the default CSR set-up (CS3) to
ensure that there were no other differences affecting the inversion results.

Table 1: List of the inversion setups for the CO, intercomparison with the two inversion
systems LUMIA and CSR

Experiment Inversion Transport model Prior uncertainty
System Foreground | Background Shape Decay
LF5 LUMIA FLEXPART | TM5 Variable Gaussian
LF3 LUMIA FLEXPART | TM3 Variable Gaussian
LS5 LUMIA STILT TM5 Variable Gaussian
LS3 LUMIA STILT T™M3 Variable Gaussian
CS3 CSR STILT T™M3 Flat Hyperbolic
Cs5 CSR STILT TM5 Flat Hyperbolic
CF3 CSR FLEXPART T™M3 Flat Hyperbolic
CF5 CSR FLEXPART TM5 Flat Hyperbolic

All simulations were done for the year 2018 using the same VPRM (Mahadevan et al., 2008)
NEE prior terrestrial fluxes, optimized at a weekly resolution on a 0.25° grid, and using
continuous observations from 45 tall-tower sites in Europe. Anthropogenic emissions are
taken from the EDGAR v4.3 inventory (for the purpose of this comparison studies this version
of EDGAR is fully sufficient) and are updated to recent years according to statistics from the
energy company BP of fossil fuel consumption, and they are distributed spatially and
temporally based on fuel type, category, and country-specific emissions, using the COFFEE
approach (Steinbach et al., 2011). The emissions are remapped to a 0.25° spatial grid and to
an hourly temporal resolution. Ocean fluxes are taken from Fletcher et al. (2007), who provide
climatological fluxes at a spatial resolution of 5°x4°, remapped to 0.25° to be compatible with
the biosphere model fluxes.

We first analyzed the impact of the various component changes in the inversion systems on
the annual estimates of the posterior terrestrial biosphere flux over the whole domain. The
spread among posterior estimates is relatively large, ranging between —-0.72 and 0.20 PgC
yr't (Figure 1b) with an average of —0.29 PgC yr! among the ensemble for the annual
estimates. This range is larger than the assumed prior uncertainty of the terrestrial biosphere
flux of 0.47 PgC yr. This value for the prior uncertainty on the annual European terrestrial
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flux has been derived from the global uncertainty (2.80 PgC) assumed in the CarboScope
global inversion for the annual biogenic fluxes (R6denbeck et al., 2003) On a monthly basis,
the mean standard deviation of monthly posterior estimates over the ensemble of inversions
is 0.72 PgC yr. The largest deviations occur between inversions that differ by the foreground,
i.e., regional transport models (e.g., CS3 versus CF3 or LS5 versus LF5). Also, the seasonal
amplitude was found to be different between the STILT and FLEXPART inversions. The
STILT-based inversions led to a larger amplitude of posterior NEE than the FLEXPART-based
inversions (Figure 1a).

(a) (b)
priorq |
LF5 N
LS54
LF3 Lol
LS3
CF51 1
CS51 ]
CF31 [
Cs31

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec -15 -1.0 05 0.0

Annual NEE (PgClyr)

Figure 1: Panel (a) refers to posterior monthly NEE estimated using eight inversions, including
prior NEE shown in black, with CSR (solid lines) and LUMIA (dashed lines), and panels (b)
denotes the corresponding annually aggregated fluxes. Orange and red colours correspond to
TMS3, and dark or light blue correspond to TM5. Orange and light blue colours refer to STILT,
and red and dark blue refer to FLEXPART.

When looking at domain wide averages the largest differences in posterior flux estimates result
from the models used for calculating the foreground response (the regional transport models
STILT and FLEXPART). The differences in monthly estimates of NEE calculated with CS3
and CF3 inversion setups that vary in regional transport models are shown in Figure 2
(“transport”). The differences caused by transport have a clear seasonal pattern: differences
between CS3 and CF3 peak in November and June, reaching 2.11 and -1.82 PgC yr™,
respectively. The best agreement between both inversions is obtained during the transitional
months (August and April) with differences of —0.10 and -0.18 PgC yr™, respectively.

= transport = system

background

NEE differences (PgC/yr)
o

27 (a)
Jalm Féb Mlar A;:»r Mlay JLIm J:.,I| Alng S:ep Olct N:3v D:ac
Figure 2: Differences in optimized fluxes calculated with the regional transport models STILT
and FLEXPART (“transport”; CS3-CF3) and background provided through TM3 and TM5
(“background”; CS3-CS5). “system” refers to the differences between CSR and LUMIA
inversion for optimized fluxes (CS5-LS5).
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The second largest differences in posterior flux estimates result from the background, i.e.,
which model was used for calculating the lateral boundary conditions. The impact of using
different background fields was analysed by assessing the differences in the posterior NEE
estimated with CS3 and CS5 inversions, which use boundary conditions from the global
inversions CarboScope and TM5-4DVAR, respectively. Figure 2 (“background”) shows that
this impact has rather the form of a bias (almost consistent differences over time) when
aggregated over the entire domain of Europe: differences in the monthly posterior fluxes
between CS3 and CS5 inversions amount to a range of 0.11 to 0.64 PgC yr ™t with the smallest
differences occurring in the winter months. Larger flux corrections are modelled when using
background fields from TM5 (CS5) than from TM3 (CS3).

The smallest differences in posterior flux estimates result from using different systems, here
we compare CS5 and LS5 (Figure 2; “system”). The monthly differences between CS5 and
LS5 range between 0.06 and 0.56 PgC yr?, the differences peak during May, June, and
November, while the differences remained rather small during the rest of the year. Generally,
LF5 predicts larger CO; releases compared to CS5.

Figure 3: Panels (a)-(c) show the spatial distributions of annual NEE estimated with the base
inversions CS3 and LF5, as well as their prior. Panels (d) and (e) depict the innovations of
fluxes calculated for the inversions CS3 and LF5. Green circles denote the locations of
observational sites.

In terms of spatial distributions, the base cases of CSR and LUMIA inversions, i.e., CS3 and
LF5 (default configurations of both systems), exhibit a reasonable agreement in the annual
terrestrial source/sink distribution over Europe (Figure 3). Major corrections compared to the
prior fluxes are obtained over western and southern Europe suggesting an overestimation of
the CO- uptake by the prior biogenic fluxes. The exceptionally dry summer in 2018 in Europe
(Bastos et al., 2020) turned some areas in central, northern, and western Europe into a net
source of CO,. The discrepancies between CS3 and LF3 noticed in the innovations (that is
the difference between posterior and prior), e.g., in northern France, the Netherlands, and
south-eastern UK, are attributable to the combination of differences in regional transport
models, lateral boundaries, and system configurations.

D5.6 Quantification of uncertainty ranges from multi-model inversions 11
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diff: transport diff: background diff: system

Figure 4: Panels (a)-(c) indicate differences in annual posterior NEE estimated with STILT and
FLEXPART models, referred to as “transport” (CS3-CF3); TM3 and TM5 are referred to as
“background” (CS3-CS5); and CSR and LUMIA are referred to as “system” (CF3-LF3).

In terms of the spatial differences in annual flux estimates, using STILT generally leads to
predicting larger sources of CO; in the regional inversions, in particular over central Europe
and the UK compared to using FLEXPART (Figure 4, “diff: transport”). In turn, inversions using
FLEXPART suggest less uptake over northern Italy, Switzerland, and south-eastern France.
However, this impact refers to a spatial pattern of transport differences that might be caused
either by meteorological data or by problematic sites that transport models have difficulty
representing.

The distributions of spatial differences in posterior fluxes caused by using different background
fields indicate a homogeneous impact across the full domain of Europe (Figure 4, “diff:
background”). These findings confirm the results obtained in Figure 2 (“background”) for the
temporal domain. This impact is consistent in space and time, with coherent deviation over all
months, and is therefore not expected to affect the seasonal and interannual variability.

The spatial differences shown in Figure 4 “diff: system” alternate between positive and
negative differences over the domain (but these tend to compensate when aggregating the
flux estimates over the full domain). It should be noted that the inversion systems mainly differ
in the definition of the shape and structure of the prior uncertainty. Therefore, applying different
structure and magnitude of prior flux uncertainty in the inversions may inflate the error in CO-
flux estimates over the underlying regions in the domain, in particular if the spatial differences
do not cancel out. The spatial results indicate that the impact of inversion systems should not
be neglected, especially at national and subnational scales.

In this section, we have presented an analysis of the impact of changing various components
(foreground and background atmospheric transport model, and prior uncertainty specification
as referred to as inversion system) in atmospheric tracer transport inversion systems on
estimating net terrestrial CO, fluxes using two such systems (CSR and LUMIA) over Europe
in 2018. The main focus here is to quantify the dominant drivers of uncertainties in the posterior
CO; estimates derived from atmospheric tracer inversions. Two Lagrangian transport models
(STILT and FLEXPART) were used to assess the impact of foreground (regional) transport on
posterior CO; fluxes. Two Eulerian transport models (TM3 and TM5) were used to quantify
the impact of the background (lateral boundary conditions) on posterior CO fluxes, and finally
two different schemes to set spatio-temporal prior uncertainties as employed by LUMIA and
CSR were used to quantify the impact on posterior CO; fluxes. These variations lead to an
ensemble of eight inversions. The results from this ensemble show a large spread in the
annual terrestrial posterior fluxes over the whole domain of 0.92 PgC yr! ranging between
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-0.72 and 0.20 PgC yr™*, which is almost twice as large as the assumed prior uncertainty of
0.47 PgC yrt.

The choice of the regional transport model accounts for the largest part of the differences in
the posterior fluxes. Temporal and spatial differences in posterior fluxes demonstrate a spatial
pattern over certain areas during June and December, suggesting rather systematic
differences between STILT and FLEXPART. The differences in the regional transport are
mainly caused by the transport schemes (meteorological forcing data only partially contribute
to these differences, not shown here). In addition, the global transport models used in the
global inversions that provide the far-field contributions to the regional domain are responsible
for small but non-negligible differences in the inversion estimates. These differences appeared
to be homogeneous spatially and temporally, and hence can be considered as a bias. The
differences arising from using different inversion systems integrated over the entire domain of
Europe were in contrast rather small in comparison. However, such an impact is a result of
applying different structure and shape in the prior flux uncertainty reflecting the importance of
the way the uncertainty is prescribed in the tracer inversion systems.

The results obtained here emphasize the need for further evaluation of atmospheric transport
models in order to improve the performance of the models and hence the inversion systems.
A first aspect on this is to perform an intercomparison of regional atmospheric transport
inversions for CH4, which is believed to be more robust since there are mainly emission
sources and no large sink terms for CH,4 as opposed to the net CO; flux which is the difference
between two large gross fluxes. This topic is further discussed in the next section (Section 4)
of this report. Ultimately, what is needed to reduce uncertainties and quantify the fidelity of
inversion systems is an objective benchmarking system. A roadmap for setting up such a
system is presented in Section 5 of this report.

4 Assessment of uncertainties in European inversion of
CHa

The CHs inversion intercomparison builds on initial efforts in the H2020 project VERIFY to
collect prior fluxes and surface measurements over Europe for use in the regional inversion
systems developed in the project. We made use of WMO-IG3IS/Transcom meetings to discuss
an international intercomparison with the inverse modelling community based on the protocol
developed in VERIFY. This gave other groups within and outside of Europe the opportunity to
join the intercomparison, increasing the number of inverse models to 8. Support from COCO2
and WMO-IG®IS was used to coordinate the experiment, update the protocol, make the input
data package available to potential participants, collect submissions on a server, analyze the
results, organize meetings with the participants to discuss the outcomes, and present the
status of the experiment at international meetings.

The aim of the experiment is to investigate the use of the inverse modelling technique to
support the national emission reporting to the UNFCCC by improving the consistency between
the national emission inventories and atmospheric measurements. The case of CHs emissions
over Europe was chosen, because of the good availability of measurements from the ICOS
regional network and the relatively large uncertainty of anthropogenic CHs emissions
(compared with CO,), which atmospheric measurements may help reduce. The experiment
focused on emissions trends starting in the year 2008, when the INGOS project started
delivering data to ICOS, until 2018.

A second, equally important, aim of the intercomparison experiment is to develop
benchmarking methods to evaluate and compare the performance of inverse modelling
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systems and monitor their development in time. For this purpose, the protocol made an
evaluation dataset available of the coordinates and sampling times of independent
measurements that were not used in the inversions, for example because of incomplete
measurement time series (making them less suitable for use in the inversion).

This section describes the experimental protocol (Section 4.2) and presents and discusses
the results that were collected (Sections 4.3 and 4.4). The results section includes
comparisons of inverse models and surface measurements that are used Section 5 to discuss
a future benchmarking system.

Participants are requested to optimize surface fluxes of methane using their inverse modelling
systems for the European domain, covering at least the area of 15°W- 35°E and 35°N — 70°N.
Inversion results should cover as many years as possible in the time range of 2005-2018. If
continuous coverage of all those years is too computationally expensive then at least the years
2008, 2013, and 2018 are requested to be able to compare fluxes from as many inverse
models as possible, including their trends. The requested output is in the form of gridded
surface fluxes and country integrals for at least EU27 + UK.

The inverse modelers are requested to make use of a common set of prior fluxes,
measurements, and regional domain boundary conditions (for regional models) in their
inversion setups. However, it was decided not to prescribe prior or data uncertainties. For the
surface fluxes, this is because the different resolutions of the models requires a regridding of
emissions that would make the prior uncertainties at the model grid ambiguous without
detailed information about spatiotemporal correlation of uncertainties, which inventories do
not provide. For the measurements, estimates of measurement uncertainties were provided
and requested to be used, however, the model / data representation error components of the
data uncertainty are model dependent and were therefore not prescribed. Because of these
rules, the intercomparison focuses primarily on impacts of transport model differences and
differences in the optimization method and setup.

Table 2: Prior methane emissions used in the CH4 inversion intercomparison.

Category Data source Original Resolution Time period
Peatlands, Mineral soils JSBACH- 0.1°x0.1° daily 2005-2020
(emissions & uptake), HIMMELI*

inundated

Inland water? ULB 0.1°x0.1° monthly Climatology
Termites Saunois, 2020 - annually Climatology
Ocean Weber, 2021  0.25°x 0.25° monthly Climatology
Geological Etiope, 2015 - annually Climatology
Fossil fuels EDGAR v6.0 0.1°x0.1° monthly 2005-2018
Agriculture and waste EDGAR v6.0 0.1°x0.1° monthly 2005-2018
Biofuels & biomass GFED-4.1s 0.25°x 0.25° monthly 2005-2020
burning

!Covers Europe from 10.5°W to 33°E and 34.5°N to 73.5°N
2Covers Eurasia from 26°W to 55°E and 34°N to 78°N

Prior fluxes are made available as monthly gridded flux fields at 0.250x0.250 resolution.
Alternatively, fluxes are also provided at their native resolution (see Table 1), for inversions
that can benefit from the higher resolution information offered by those datasets. Modelers are
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free to represent the OH sink of methane in their European inversion, for which an OH field
has been made available.

The VERIFY project delivered a harmonized set of CH4 measurements. This set contains
observations from 66 surface sites from the INnGOS project (2005- 2016), NOAA flask sampling
sites in Europe (2005-2018), AGAGE, and additional data from European sites (ICOS,
WDCGG and personal communications). The station list classifies sites as ‘core’ (39), ‘other’
(22), and ‘validation’ (5) (see Figure 5). Participants are asked to perform separate inversion
using measurements from ‘core’ (39) sites and ‘core + other’ (61) sites. ‘core’ sites are those
that deliver the most complete datasets throughout the whole inversion time window. The ‘core
+ other’ are used in an inversion that will be referred to as ‘Exp 1°.

Participants who use regional models are requested to use a common set of initial and lateral
boundary conditions from the CAMS v19rl reanalysis, based on a global inversion using
surface measurements at background sites. For groups that make use of the Rdédenbeck
method (ROdenbeck et al, 2009) consistent baseline concentrations have been made
available.

All groups are asked to perform inversions using the ‘core’ and ‘core+other’ measurement
datasets. To evaluate the transport model performance participants are asked to perform a
forward run of 222Rn, for which a climatological flux field has been made available based on
Karstens et al (2015). After a first evaluation of results, discussed with the participating
groups, it was decided to allow for one round of updated inversion for those who want to
improve methodological issues that came up in the analysis and discussions.

Overview of observation locations
10°W 0° ° °

30°E
o —
other
.

validation

70°N

60°N

50°N

40°N

Figure 5. Map of CH, sites used in inversions and for validation

Since submissions are on a voluntary basis, some groups were only able to submit results
that were incomplete on, for example, the validation dataset, posterior CH4 mixing ratios. Or
222Rn abundances. Such submissions could still be used to assess methane fluxes, but not for
performance evaluation and benchmarking. Table 3 provides an overview of participants,
models, and the information that has been submitted. CIF-Chimere and CIF-Flexpart were
performed within VERIFY, which explains why the validation dataset that was requested in the
COCO2/IG3IS protocol and country integrals (using the country masks we provided) are not
available. For these submissions country totals were reconstructed from the gridded fluxes.
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For CarboScope an updated submission, which should make the missing mixing ratio output
available, did not come in time for this report.

First, we examine spatial patterns of surface flux adjustments from the gridded surface flux
fields that were provided by all participants. The prior fluxes show a good agreement between
the models, confirming a successful implementation of the protocol regarding these fluxes.
Figure 6 compares annual mean differences between posterior and prior fluxes for the year
2013. The geometry of the observation network (Figure 5) suggests that the surface fluxes of
Germany and the BeNelLux are resolved relatively well by the inversions. According to Figure
6, the flux adjustments for these countries are reasonably consistent between the inversion
systems with emission increases over The Netherland and Northern Germany. In the
remainder of Germany the flux adjustments are smaller and more ambiguous between the
inversions at the southern border. This pattern is the least clear in the global NIES inversion,
which shows smaller emission adjustments than other models and systematically lower across
the European domain. Nevertheless, The Netherlands is among the few regions where upward
flux adjustments are made in NIES.

Table 3: Participants and available datasets.

Gridded | Country | CH, mixing Valid
Fluxes totals ratios data

CarboScope Base/Expl

CIF-Chimere Base

NILU CIF-Flexpart Base

Italy shows emission adjustments that are downward on average, but the size of this emission
reduction seems less well constrained by the data. Some inversions, such as CIF-Flexpart
(‘NILU’) and Lumia show strong local emission adjustments in the north of Italy, which could
point to difficulties representing the measurements at Mt. Cimone in these models. The most
notable disagreement between the inversion optimized fluxes is for Ireland, where emissions
are either increased (CSR), decreased (CIF-Flexpart, Iconda), or not adjusted much (the other
inversions). This points most likely to the influence of the western lateral domain boundary
condition that is used, with Ireland being the first country (for the predominantly westerly
winds) where emission can be adjusted to improve the agreement with the most western
measurement sites in the network. Similar disagreements are found for Spain, which is not
well detected by the network. Emission adjustments in Eastern Europe are less prominent
than in the west, which could be explained by the western European centre of weight of the
ICOS network in combination with a predominantly westerly flow.
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Despite some minor differences between different years (see Figure 8) the general pattern in
Figure 6 is remarkably robust in time. Even different months of the year show a similar pattern
as the annual mean.
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Figure 6: Annual mean surface flux adjustments (posterior — prior) for the year 2013 in kg/m?/h

The mean emission over 2006 — 2018 from the prior inventory is for most countries within the
range of posterior flux estimates, suggesting that the inventory is consistent with atmospheric
data within the uncertainty of the flux inversions. Exceptions are the aforementioned countries
Italy and the Netherlands, and to a lesser extend also Hungary. As can be seen in Figure 7,
estimates for The Netherlands and Hungary are significantly and systematically higher than
the inventory, with the exception in both cases of the NIES model. Conversely, for Italy the
inversion estimates are systematically lower than the inventory, again except for the NIES
model. As discussed earlier the flux adjustments of the NIES inversion are smaller and
smoother than for the other inversions. However, for some countries NIES does deviate
significantly from the prior in a way that is not very different from the other models. Therefore,
the NIES inversion cannot simply be disregarded as an outlier.
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Figure 7: Comparison of posterior and prior CHs emission for selected countries.

To assess emission trends, it is useful to subtract the mean as shown in Figure 8. For this
figure, countries have been chosen with relatively large methane emissions in the region that
is expected to be best sampled by the ICOS network considering the network geometry and
the importance of the west to east component of the wind. For the UK, Poland, and France
the trend of the emission inventory is within the range of trends from the inversions. In the
case of Italy (not shown), this range in trend and year-to-year variability is quite large among
the different inversions and can therefore not be estimated robustly. For The Netherlands and
Germany the inversions show a relatively consistent emission pattern with a decrease
between 2006 and 2011, turning into an increase since then. The inventory estimates for these
countries shows a steady decline in emissions. For Hungary the inversions show a trend that
is on average somewhat larger than estimated by the inventory. However, the range is again
large, with NILU’s CIF-Flexpart showing the largest deviation from inventory, contrasted by
FMI's CT-Europe being in reasonably agreement with the prior.
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Figure 8: Comparison of posterior and prior CH4 emission anomalies for selected countries.

Finally, to assess the performance of the inversions and the atmospheric transport models
that are used, we have compared the prior and posterior fits to the observations. Figure 9
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shows a few examples of such comparisons along a west to east transect from Biscarosse
(France), Ochsenkopf (Germany), and Hegyhatsal (Hungary) for the year 2013. At Biscarosse,
near the Atlantic coast of France, all inversions are quite well capable of capturing the
observed variability already in the prior model setup. Notice that the night time measurements,
which are not used in the inversions except for mountain sites, are left out of this comparison.
Biscarosse is a core station in the protocol, meaning that these data have been used in the
core inversion and are therefore not an independent evaluation of the inversions.

The emission adjustments in the run with posterior fluxes change the amplitudes rather than
the phasing of the simulated variability. This may be expected as the short-term variability is
largely dictated by the synoptic weather conditions, rather than the emissions. However, the
amplitude of variability is also sensitive to the transport model that is used. For example,
mixing ratios in July are underestimated by Lumia, but well simulated by CIF-Chimere (LSCE)
and Iconda with the same prior fluxes. In December, Iconda overestimates the observations,
while CIF-Chimere and Lumia are at the observed level. The peak in the beginning of March
is either underestimated (CIF-Chimere) or overestimated (Ilconda). These transport model
differences are known to be sensitive to vertical mixing and the simulated height of the
planetary boundary layer, which is critical for the emissions that are estimated by the
inversions. As expected the posterior fits to the measurements are closer than the prior,
although mismatches remain visible in these plots.

The picture at Biscarosse is not very different further inland as shown for the comparison at
Ochsenkopf. Here the observed time series show more measurement gaps complicating the
comparison. Nevertheless, a systematic overestimation using the prior fluxes is visible
towards the end of the year in CIF-Flexpart (NILU), Lumia, and NIM. This is not reproduced
by Iconda and CIF-Chimere, however, raising again the question of the role of transport model
uncertainty. At Hegyhatsal, strong enhancements in methane are observed in the winter, again
with strong difference in their representation by the Iconda and CIF-Chimere in this case. The
inconsistency in the model — observation mismatches might well explain the large range of
posterior emission adjustments discussed earlier.
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Figure 9: Modelled and measured CH, time series at selected sites comparing a priori and a
posteriori model fits to the measurements.

Figure 10 summarizes the prior and posterior fits of the inversions to the measurements that
are optimized in the inversion, showing the RMS error at each station for each model. The
results for CT-Europe show RMS errors that are almost a factor two higher than the other
models. The measured and modeled time series show systematic offsets (not shown) pointing
to a remaining problem with the inversion that the authors have been contacted about. The
other models show overlapping circles and crosses indicating similar fits of ‘core’ end ‘exp1’
inversions to the measurements. The inversions have difficulty fitting the site in Ispra (which
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has a complicated flow pattern that is difficult to represent in the models), the mountain site
Mt Cimone, and the high latitude site Zeppelin, which show very high RMS errors compared
to other sites. The Lumia inversion system shows the lowest RMS of all models at many sites,
starting from prior fits to the stations that are not much different from the other inversions.
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Figure 10: RMS error of the fit between CH4 inversions and measurements at each optimized
measurement site.

To facilitate the comparison of prior and posterior RMS errors between models we averaged
them over all sites (see Figure 11) except Izana (1ZO) and Zeppelin (ZEP) (both sites are not
inside the model domain of most of the regional models). The latter two were disregarded
because of large residual errors (see Figure 10), most likely explained by their large distances
from the European emissions that are optimized. Lumia has the lowest posterior RMS errors,
followed by NIES and Iconda, which have the lowest prior RMS errors. CIF-Flexpart (NILU)
and Lumia show the strongest error reductions between prior and posterior.
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Figure 11: As Figure 9 averaged over all measurement sites.
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The inversion results for methane presented in this section highlight the challenge of
estimating national greenhouse gases emission using a regional monitoring network, which is
the case not only for carbon dioxide but also for methane. The models used in the
intercomparison are quite well capable of capturing the timing of mixing ratio anomalies, an
important requirement for emission estimation which is satisfied. However, the signal of
emissions that is most evident in the mixing ratio time series is the amplitude of the observed
variability, which is sensitive to transport model uncertainty. A logical next step would be to
further investigate such uncertainties using simulations of 222Rn. So far, however, the number
of participants who provided information on radon is unfortunately too low for such an
assessment.

The range in posterior fluxes obtained from the inversions is currently too large to provide a
strong constraint on national emissions. The inventory estimates of mean emissions and
emission trends are mostly within the range of the inversion results. So, it can be concluded
that they are consistent with the atmospheric information. However, the limited constraint of
the inversions on the inventory fluxes is more due to the quality of the inversions than intrinsic
limitations in the information on fluxes provided by the measurements. Therefore, there is
scope left to strengthen the observational constraint on the fluxes by improving the quality of
the inversions. The only countries for which the CH, inversions deviate systematically from
the prior are The Netherlands and Italy, where the inventory under- and overestimates the
emission according to the inversions. In the case of The Netherlands, as well as for north-
western Germany, this may include regions of intensive agriculture. Further research is
needed to investigate if these differences can really be attributed to inventory uncertainties.

5 Roadmap for benchmarking atmospheric inversion
systems

Following the results presented in the previous two sections showing large ranges in posterior
fluxes among the various inverse modelling systems it is rather obvious that an objective and
robust evaluation/benchmarking system will be instrumental for reducing the large spread in
posterior estimates of either CO or CH4 emissions from regional atmospheric inversions. This
also follows the fact that the inverse problem is usually underdetermined, because
observational networks are sparse in coverage and hence resolving fluxes (spatially and
temporally) at scales relevant for scientific or policy interest is not possible without prior
information. In addition, the problem is ill-conditioned because diffusion in atmospheric
transport can render rather small variations or errors in observed or modelled atmospheric
concentrations to relatively large changes or errors in the posterior flux estimates. Hence, it
is paramount to objectively evaluate the results of such inverse problems. Robust
evaluation/benchmarking systems have already been used in the past for other modelling
systems such as numerical weather prediction models (e.g. Rodwell et al., 2010, or also here
‘ECMWEF: Quality of Our Forecasts, http://www.ecmwf.int/en/forecasts/quality-our-forecasts
(last access: 17 September 2023). More recently, such developments have also taken place
for e.g., terrestrial biosphere models such as the International Land Model Benchmarking
system (ILAMB; Collier et al., 2018) or also the CoCO2 modelevaluation.org instance (as part
of the CoCO2 project and described in deliverable report D5.2 ‘Report on error assessment
data base and toolbox for simulated terrestrial CO- fluxes’) that provides a toolbox to assess
errors of simulated terrestrial CO; fluxes (Nelson and Walther, 2022). For the evaluation of
atmospheric inversions it is useful to distinguish between the quality and the skill of an
inversion system. The former refers to whether an inversion system provides correct results
(‘it got it right’) whereas the latter refers to the reasons for providing correct results (‘why did it
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get it right’). Here we describe a way forward for establishing a community benchmarking
system for atmospheric greenhouse gas inverse modelling systems with a focus on assessing
the quality of the system.

Main components of a community benchmarking system

Because direct observation of the major long-lived greenhouse gas (GhG, here CO; and CH.)
fluxes at the relevant spatiotemporal scales for evaluating posterior emission estimates from
inversions are rarely available, any evaluation/benchmarking system must rely on indirect
measures. The roadmap for a community benchmarking system laid out here consists of two
main components: First, a diagnostic performance check of an individual inverse modelling
system against a range of independent information as well as statistical diagnostics of
inversion results. And second, a platform for comparison of inversion results from an individual
inverse modelling system against results from ideally an ensemble of different inverse
modelling systems. This should be seen as collaborative work among atmospheric CO>
modelers to assess atmospheric GhG inversion models and help individual groups to study
the performance of their system against an ensemble of systems. This ensemble should be
based on a set of well-defined ‘base inversions’, such that any potential user can upload their
(recent version of) inversion results and compare these against the ensemble.

A comprehensive assessment of available methods for diagnosing the quality of inverse
modelling results for long-lived greenhouse gases for individual inverse modelling systems
has been published by Michalak et al. (2017). They mainly distinguish between assessment
against independent information, statistical diagnostics of inversion results, sensitivity tests
and analysis of robustness, and synthetic data experiments as diagnostic methods. The first
three are highly relevant here: the assessment against independent information and the
statistical diagnostics are most important for individual systems, whereas the analysis of
robustness can also be done as part of an ensemble described below.

As mentioned before the direct evaluation against independent information from surface fluxes
is usually not possible because of the differences in scales. But posterior flux estimates can
be evaluated against unused atmospheric observations, which are withheld from the inversion.
These observations are additional data from in situ station measurements, aircraft profiles,
ground-based remote sensing (such as the Total Carbon Column Observing Network,
TCCON), or satellite remote sensing. A more detailed description of the various datasets is
given in section 5.2. The evaluation is performed by an additional ‘forward’ transport simulation
of the posterior fluxes translating the flux estimates into corresponding atmospheric
concentrations (either at the ground-based measurement station, an atmospheric profile or
the total atmospheric column). Such comparisons against various independent atmospheric
observations provide information on whether the posterior flux estimates are consistent with
the main constraints provided by the atmosphere, i.e. seasonal cycle, latitudinal gradients, or
regional patterns of concentrations (e.g., Jiang et al., 2014; Diaz Isaac et al., 2014; Pandey et
al., 2016; Liu and Bowman, 2016; Kountouris et al., 2018; Bergamaschi et al., 2018; Crowell
et al., 2019). Typical metrics to compare against these time series data are bias and standard
deviation.

Another way of benchmarking posterior flux estimates is the evaluation at larger scales based
on independent information. This type of evaluation typically involves comparisons of the
inversion-derived estimates against flux magnitudes at larger (e.g. continental to larger
countries) scales assessing the direction and magnitude of the net flux in such a region (i.e.,
source versus sink, e.g. Berchet et al., 2013), flux seasonality (e.g. Houweling et al., 2014), or
spatial and temporal gradients (e.g. Cressort et al., 2014). For assessing the direction and
magnitude of the net flux, independent estimates based on either remotely sensed vegetation
data (such as NDVI or FAPAR) or upscaling of direct measurements (such as the FLUXCOM
product) can be used, however, these products carry their own uncertainties such that a
guantitative evaluation is difficult. On continental scales and in regions with dense direct (eddy

D5.6 Quantification of uncertainty ranges from multi-model inversions 23



CoCO2 2023

covariance) flux measurement networks (such as Europe) the posterior flux estimates from an
inversion can be compared directly against average quantities of the direct measurements.
For example, Broquet et al. (2013) compared the temporal (monthly) evolution of European-
wide flux estimates against the average flux (flux aggregates) calculated from continuous,
quality controlled eddy covariance measurements from a large set of sites that are spread
over the main regions and ecosystems of Europe. The data availability is discussed in Section
5.2. Relevant metrics for the direct comparisons are the amplitude of the seasonal cycle and
the root mean square errors in the monthly/daily fluxes.

As outlined in Section 3 above model transport errors are the main contributors to the
uncertainty in the posterior flux estimates. The best way to obtain an estimate of these errors,
and benchmark atmospheric tracer transport models, is by assessing the transport model
guality in a controlled tracer release experiment. However, such experiments are limited in
their scale and therefore the estimated errors are not specific for certain locations and
meteorological conditions. An alternative is a forward transport model simulation for a tracer,
for which the fluxes are widespread and both fluxes and concentrations are relatively well
known. Examples for this are the simulations of 222Radon (?*2Rn; Karstens et al., 2015) or SFe
(Krol et al., 2018), however, for both tracers the emissions fields are not known well enough
to provide robust estimates of the large scale transport errors. Another way to benchmark
transport models is to analyse the quality of the vertical mixing. This can be done by comparing
the simulated depth of the mixing layer against derived mixing heights from radiosonde
measurements (Gerbig et al., 2008). Typical metrics for the evaluation are here again bias
and standard deviation against the observations at measurement sites.

Another strategy for evaluating inversion results is based on assessing whether the prior and
posterior flux estimates, their uncertainties and covariances are consistent with the
assumptions that went into the setup inverse modelling system. This strategy then rather
focuses on evaluating the statistical self-consistency of the inversion framework. This helps to
identify errors and misconceptions in the setup that eventually can lead to unreliable results.
A standard statistical diagnostic for inversions (assuming Gaussian, unbiased errors) is to test
whether the sum of squared posterior errors follows a chi-squared distribution with a known
number of degrees of freedom (e.g. Desroziers et al., 2005; Cressot et al., 2014). Such a chi-
square test should be included in the benchmarking system to verify the self-consistency of a
given inversion system.

The second component of the proposed community benchmarking system is a platform for
comparing posterior emissions from an individual inverse modelling system against results
from an ensemble of inverse modelling systems (including a group of different transport
models and inversion methods) to understand the impact of transport model error and
inversion method on estimated fluxes. An example for such a platform is the OCO-2 v10 MIP
available at https://gml.noaa.gov/ccgg/OCO2_v10mip/ (last accessed 17 September 2023). In
order to facilitate the comparison of posterior results and to be able to track the reasons for
differences in the posterior flux estimates from the various inverse modelling system a strict
pre-formulated experiment protocol for performing a ‘base inversion’ experiment including a
well-defined common format for the submitted results is required. The details of a proposed
protocol are given below. In short, the protocol needs to provide a list
of mandatory measurement stations to be used in the inversions as well as prescribe prior flux
fields to be used and any other flux components not to be optimised in the inversions (such
as e.g., emissions from fossil fuel burning in the case of CO,). Both CO, and CH, are included
as inverted tracers in the community benchmarking system. Additional tracers, such as
222Radon should also be included for evaluating the quality of the transport model component
of the inverse modelling systems. In addition, the community benchmarking system needs to
include advanced and easy-to-use collaborative visualization tools to facilitate the uptake of
the comparison/benchmarking platform by the community.

The community benchmarking system should be hosted centrally at one place that can provide
both storage space to store the data as well as collaborative tools to analyse and visualise the
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data. The ICOS Carbon Portal facilities can provide both these aspects by making available
storage space through their data servers, and even more importantly, by running a jupyter hub
(https://jupyter.icos-cp.eu/) that can be accessed by the community and can host jupyter
notebooks allowing collaborative analysis and visualisation of the submitted data.

Any submissions from individual inverse modelling groups to the benchmarking platform
should include both posterior emission estimates and their uncertainties. ldeally, the
uncertainties are provided on the same spatio-temporal resolution as the emission estimates.
However, if an individual inverse modelling group cannot include posterior uncertainty
estimates at the same resolution as the posterior emission estimates then, at least,
aggregated uncertainty estimates on national and annual scale should be submitted.

The spatial focus of the community benchmarking system should be on a data rich region such
as Europe as defined in the EUROCOM project (15° W-35° E by 33° N-73° N). But
submission from global inverse modelling systems that include the European region in a
sufficiently high spatial resolution (~1° by 1° in a regular longitude/latitude grid) should be
allowed as well.

A key requirement for the benchmarking system is transparency. That means any group
wanting to participate and submit results to the community benchmarking platform needs also
to provide all the necessary meta data. This includes a full description of the components of
their inversion system (i.e. transport model, inversion methodology as well as set-up of the
system beyond any specifications given in the comparison/benchmarking protocol). In
particular, the model setup needs to be described providing details on how the background
contribution is treated in regional systems and how the prior uncertainty is specified.

To increase the numbers of participants anonymous initial submissions should be allowed and
new users should be encouraged to upload their results themselves and test if their files
comply with the requested format and fall within the results of the ensemble. Also, the public
visualisation of the results from the comparison can be done such that individual inversion
systems are anonymised.

A set of basic diagnostics needs to be performed with the ensemble of submissions. Among
them are the ensemble mean (weighted evenly by model submissions, but at a later stage this
can be complemented by a weighting according to specific model performance from individual
benchmarks against independent data as described above), ensemble spread and standard
deviation across the ensemble on top of the individual results.

Protocol

The starting point for a common protocol for the community comparison/benchmarking system
is the protocol for the CH4 inverse modelling intercomparison described in Section 4. This
protocol is provided in Appendix 8 as an example, which can also be used and revised
accordingly for CO:x.

Potential submissions should focus on a few selected years to also allow the analysis of
emission trends. The base year can be 2018 because this year has already been intensively
studied (e.g. Monteil et al., 2020; Thompson et al., 2020; Munassar et al., 2023) and is also
included in the CH4 intercomparison from Section 4. As mentioned before, any submission
needs to also include uncertainty estimates on the posterior emissions. An important aspect
that simplifies the collaborative analysis (by e.g. jupyter notebooks) of submitted results
tremendously is to comply to a given output format as specified in the protocol.

The exact specifications in the protocol depend also on the initial participants and what they
can provide and what they would like to see, but the protocol needs to include information on
(see Appendix 8 for details):

e Spatial and temporal domain definition
e Prior fluxes to be used
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o Emission fields for any flux components not to be optimised by the inversions (e.g.
anthropogenic emissions for CO3)
e Atmospheric observations to be assimilated for which concentrations need to be
submitted
o Atmospheric observations withheld for validation but for which concentrations need to
be submitted
e Boundary conditions to be used by regional inversion systems (either as lateral fluxes
or as background fields)
¢ Uncertainties on both observations and prior fluxes
222Rn emissions fields to be transported
e Specification of the output data
o Gridded fluxes and uncertainties
o Mixing rations (also for 222Rn) and uncertainties
e Required documentation and meta data
o Contact person
o Version of the inversion system
o Details about the inversion framework:
= Definition of the state vector
= Correlation length
= Optimization method
= Treatment of background
o Details about the transport model
= Resolution
= Meteorological input data, and other relevant settings
= Estimate of the transport model error as used in the inversion
o Prior emissions and their uncertainties
= Prior flux fields to compare priors as used in the model to priors
specified in the protocol
= Source (if other sources are used than given in the protocol and
resolution)
= Assumed uncertainty and covariance
o Assimilated observations
= Deviations from list in the protocol need to be explained
o Chi square statistics of the inversion
o Overview of the performed experiments and simulated years.

Table 4 provides an overview on the required datasets, their intended use and their availability.
More information on observational datasets is provided in the deliverable reports from Work
Package 7, in particular the gap analysis report D7.6 (Parampil et al., 2023).

Table 4: Datasets for the benchmarking system

Dataset Usage Source
ICOS Carbon Portal:
Atmospheric in- Assimilation and | https://www.icos-cp.eu/data-products/atmosphere-
situ observations .
observations for
(COz and CH.) validation European ObsPack:

https://www.icos-cp.eu/data-products/PEKQ-M4T1
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https://www.icos-cp.eu/data-products/9CQ4-W69K

Satellite total

Assimilation and

OCO2 COq:
https://disc.gsfc.nasa.qgov/datasets ?keywords=oco-

2&page=1

column withheld Sentinel 5P CHg:
observations observations for : . .
S https://sentinels.copernicus.eu/web/sentinel/data-
(COz and CHy) validation products/-
/asset_publisher/fp37fc19FN8F/content/tropomi-
level-2-methane
North America:
https://aml.noaa.gov/ccgg/aircraft/
_ _ o CONTRAIL:
Aircraft Profiles Validation _ _ _ _
https://cger.nies.go.jp/contrail/download/index.html
IAGOS:
https://iagos.aeris-data.fr
Aircore Profiles Validation Europe:
(COz and CHa) https://aircore.aeris-data.fr/
TCCON:
Ground-based https://tccondata.org
column Validation COCCON:
observations https://www.imk-asf.kit.edu/english/3884.php
“**Rn emission ICOS Carbon Portal:
ma
P _ L https://doi.org/10.18160/2ST9-3NAD
atmospheric Validation .
222Rp atm. ??Rn available soon at selected ICOS
observations stations
Integrated Global Radiosonde Archive:
Radiosonde https://www.ncei.noaa.gov/products/weather-
mixing heights balloon/integrated-global-radiosonde-archive
Validation , . - : )
Climatological Climatological mixing heights:
mixing heights Provided as a supplement to Seidel et al., 2012,
https://doi.org/10.1029/2012JD018143
Direct eddy ICOS Cal’bon Portal:
covariance (EC) Validation https://www.icos-cp.eu/data-products/ecosystem-
flux observations release
Flux map from
upscaled. EC Validation https://www.fluxcom.org/CF-Download/
observations
(FLUXCOM)
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An evaluation of CH, inversions at validation sites is shown in Figure 12. This is taken from
the CH4 inversion intercomparison described in Section 4 where the participating modelling
system are known. Except for some site-to-site variations, the results are fairly systematic
across the sites of the validation dataset. The ranking of models by RMS-error is consistent
with the prior and posterior fits to inverted measurement sites (as discussed earlier in Section
4.3), except NIES performing less well than Lumia and Iconda at validation sites compared to
inversion optimized sites. Because of the low number of validation sites it is difficult to judge if
this is caused by the independence of the validation data or by the poorer spatial
representation of the validation dataset.
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Figure 12: Comparison of RMS errors of CHs inversions at validation sites.

Averages of RMS errors across all validation sites (see Figure 13) highlight the differences
between the inversions discussed above. As expected, the difference between prior and
posterior models is less for the validation dataset than for the inverted dataset. For NIES the
performance gain at validation sites as fraction of the prior RMS error is somewhat larger than
for the other models. Because of the limited number of validation sites, however, it is difficult
to judge how robust these averaged differences are. The optimization process improves the
correlation between model and measurements at all validation sites, most notably for models
that do not score so well using prior fluxes. The model bias improves for all models also. As
seen in the timeseries already, the high RMS of FMI is largely explained by a bias, that does
not improve much from prior to posterior. We are in contact with the data providers to check
this outcome.

The validation would benefit from more sites, however, at the cost of the measurements
available for emission estimation. A solution may be to perform more inversions, each
reserving different sites for validation. This would of course make the inversions more
computationally expensive, which has a trade-off with the resolution or the number of iterations
or ensemble members that can be used in a single inversion.
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Figure 13: Comparison of the performance of CHsinversions at validation sites, comparing RMS
(top), correlation (middle) and bias (bottom).

The roadmap for benchmarking atmospheric inversion systems describes a community based
benchmarking system based on two pillars: a) benchmarking individual inversion results
against a range of different observations and b) comparing results from different inversion
systems to each other (i.e. a cross-comparison of inversion results).

The first pillar constitutes a ‘traditional’ benchmarking system in which the results (posterior
GhG fluxes) of an inversion system should ideally be compared against independent
observations of GhG fluxes. This direct benchmarking against flux observations based on
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eddy-covariance measurements is usually not possible because of the scale differences
between the gridcell-based inversion estimates and point scale measurements. But the
posterior flux estimates can be assessed against unused atmospheric observations, which are
withheld from the inversion, however, such an evaluation against concentration data is not
conclusive for evaluating the quality of an inversion system as the example test case in Section
5.3 shows.

The second pillar is based on a platform for comparison of inversion results from an individual
inverse modelling system against results from an ensemble of different inverse modelling
systems. Here, the idea is not to establish an intercomparison project but rather to provide a
platform where the results of an individual inversion system can be assessed against the
ensemble results and help individual groups to study the performance of their system against
an ensemble of systems. This ensemble should be based on a set of well-defined ‘base
inversions’, such that any potential user can upload their (recent version of) inversion results
and compare these against the ensemble. For both pillars various performance metrics (such
as bias, standard deviations, root mean square errors, amplitude of the seasonal cycle) are
suggested.
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Abstract. We present an analysis of atmospheric transport impact on estimating CO; fluxes using two atmo-
spheric inversion systems {CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LU-
MIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid
CO, estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic
Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of
mesoscale transport. The impact of lateral boundary conditions for CO; was assessed by using two different es-
timates from the global inversion systems CarboScope (TM3) and TMS5-4DVAR. CO3 estimates calculated with
an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion
systems, show a relatively large spread for the annual fluxes, ranging between —0.72 and 0.20 PgC yr~!, which
is larger than the a priori uncertainty of 0.47 PgC yr—!. The discrepancies in annual budget are primarily caused
by differences in the mesoscale transport model (0.51 PgC yr~!), in comparison with (.23 and 0.10 PgC yr—!
that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the
mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral bound-
ary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the
discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis ob-
tained from ECMWF data products) used to drive the transport models are responsible for a small part of the
differences in CO; estimates, but the largest impact seems to come from the transport model schemes. Although
a good convergence in the differences between the inversion systems was achieved by applying a strict protocol
of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from apply-
ing a different inversion system. Specifically, the choice of prior error structure accounted for a large part of
system-to-system differences.
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1 Introduction

Inverse modelling has been increasingly used to infer
surface—atmosphere Auxes of carbon dioxide (CO2) from
observations of dry mole fractions made at spatio-temporal
points across an observational network (Enting and Newsam,
1990; Bousquet et al., 1999). Reducing uncertainty in the flux
estimates is, therefore, essential o reliably quantify the car-
bon budget (Friedlingstein et al., 2022; Le Quéré et al., 2018)
as well as to improve our understanding about the variabil-
ity and trends of the carbon cycle over times at finer regional
scales, in particular in response to the climate perturbation
caused by the increase in anthropogenic emissions (Shi et
al., 2021). The estimates obtained from atmospheric tracer
inversions still demonstrate large deviations due to manifold
sources of uncertainty such as using different data, inver-
sion schemes, and atmospheric transport models (Baker et
al., 2006; Gurney et al., 2016), either at global scales or, to
a larger extent, at regional scales. Although the global inver-
sions can provide convergent estimations of the global car-
bon budgets, they are limited by the coarse resolution of at-
mospheric transport that may not allow for a realistic repre-
sentation of the observations at complex mesoscale terrains.
In turn, performing regional inversions with mesoscale trans-
port models has offered a better opportunity to represent and
make use of the dense measurements available at all the sites
across regional domains (Broguet et al., 2013; Kountouris et
al., 2018a; Lauvaux et al., 2016), specifically after the ex-
panding coverage of data over large areas in recent years as
has been established, for example, over Europe by the Inte-
grated Carbon Observation System (ICOS). Although CO»
fluxes constrained by atmospheric data in the Bayesian in-
version framework inherit a dominant spatial and temporal
pattern from the atmospheric signal, the a posteriori fluxes
still suffer from a large spread when using different global
and mesoscale transport models (Rivier et al., 2010).

As a first intercomparison between six regional inversions
covering a wide range of system characteristics (e.g. prior
fluxes, inversion approaches, and transport models), the EU-
ROCOM experiment (Monteil et al., 2020) suggested large
spreads in posterior estimates over Europe, particularly over
regions that are poorly constrained by atmospheric data.
This, on the one hand, partly indicates the sensitivity of the
a posteriori estimates to the observations and to the a pri-
ori models as explained in Munassar et al. (2022). On the
other hand, inaccuracies in atmospheric transport (Schuh et
al., 2019), lar-field contributions, and the configurations of
inversions are responsible for part of that spread. A further
study suggests that uncertainties in both transport and CO;
fluxes contribute equally to the uncertainties in CO; dry mole
fraction simulations, displaying similar temporal and spatial
patterns (Chen et al., 2019).

The atmospheric transport relates the measured tracer con-
centration to its possible sources and sinks, which are ad-
justed in order to it the modelled concentrations to observed
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data. However, inaccuracies in representing the real atmo-
spheric dynamics by transport models lead to uncertainties in
CO; flux estimates. This kind of error can emerge from both
simplified parameterizations of real physics and model pa-
rameters themselves (Engelen et al., 2002). The atmospheric
transport models rely on a mesoscale representation of air
mass movements, which cannot completely reproduce the
observed fine-scale variability of tracer concentration, lead-
ing to the so-called representation error. As a result, inver-
sions cannot solve for fluxes at lower spatial and temporal
resolutions than that of their transport model, resulting in ag-
gregation errors (Kaminski et al., 2001). Additionally, atmo-
spheric transport models are typically driven by meteorolog-
ical data available from operational weather forecast models
of reanalysis data optimized against observations and dynam-
ical model forecasts. However, such meteorological fields
have uncertainties owing to errors and gaps in the observa-
tions and errors in the weather forecast models (Deng et al.,
2017; Liu et al., 2011; Tolk et al., 2008).

As the lateral boundaries are provided from a global model
run at lower resolution than the regional model (Davies,
2014), this leads to biases in CO, lateral concentrations and
thus affects the inversion estimates (Chen et al., 2019). The
information of providing boundary conditions to regional
inversions is necessary to isolate the influence of far-field
contributions before performing the regional inversion. In
Bayesian inversion setups, a proper information on prior er-
ror structures is also essential to determine the spatial pattern
of the flux corrections based on the assumed error, especially
at high spatial resolution inversions (Chevallier et al., 2012;
Kountouris et al., 2015; Lauvaux et al., 2016). Therefore, the
spatial pattern of flux corrections is dependent on the way the
error covariance matrices are constructed, which can lead to
large spatial discrepancies between the estimates from differ-
enl inversion systems.

This study is dedicated to quantify the relative contribu-
tions of the differences in optimized fluxes resulting from
varying as follows: (1) atmospheric transport models, (2) lat-
eral boundary conditions, and (3) inversion configurations
on fux estimates, as the error contributions from each com-
ponent to the inversion’s spread remain unclear in regional
inversions, specifically at finer spatial scales over a conti-
nental domain such as Europe (Monteil et al., 2020; Pe-
trescu et al., 2021; Thompson et al., 2020). We analysed
results of a posteriori net ecosystem exchange (NEE) esti-
mated from the two inversion systems CarboScope-Regional
(CSR; Kountouris et al., 2018b; Munassar et al., 2022) and
LUMIA (Monteil and Scholze, 2021). Both inversions em-
ploy pre-computed sensitivities of atmospheric mole frac-
tions to surface fluxes, so-called source-weight functions or
“footprints™, via two Lagrangian transport models at regional
scales, and they make use of the two-step inversion approach
established by Rédenbeck et al. (2009) to provide the lat-
eral boundary conditions. The regional atmespheric transport
models were used at a horizontal resolution of 0.25°. The im-
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pacts of both global and regional models were compared by
analysing the differences in space and time.

Section 2 presents detailed descriptions of the inversion
setups, the transport models, and the a priori fuxes used.
The observational stations that provide CO; dry mole frac-
tion data are described within the Methods section as well.
We introduce the results obtained from eight inversions in
Sect. 3. The results are discussed and interpreted through a
spatial and temporal analysis of the differences between the
elements of inversions in Sect. 4. Finally, Sect. 5 highlights a
few concluding remarks on the impacts of regional transport,
boundary conditions, and inversion setups on CO, estimaltes
in the inverse modelling.

2 Methods

An atmospheric tracer inversion framework is mainly made
up of transport model, data source for boundary conditions
{in case of regional inversions), datasets of atmospheric mole
fractions, and surface flux fields. In this study, several in-
version runs differing in atmospheric transport models are
conducted using two tracer inversion systems, CSR and LU-
MIA (see Table 2). The default CSR inversion system utilizes
pre-calculated footprints from the Stochastic Time-Inverted
Lagrangian Transport (STILT) model (Lin et al., 2003) at
the regional domain and the TM3 model at the global scale,
applying the two-step scheme inversion approach (Riden-
beck et al., 2009), to provide the far-field contributions to
the regional domain. In the default setup of the inversion
system LUMIA, the footprints are pre-calculated using the
Lagrangian particle dispersion model FLEXPART (Pisso et
al., 2019), and the far-field contributions are calculated us-
ing the global transport model TMS in a separate global in-
version run, applying the two-step scheme inversion as well,
These default configurations in both systems constitute the
base cases. We strive to restrict the differences in the inver-
sion runs to the targeted components, i.e. regional transport,
boundary conditions, and the inversion systems, so as 1o oul-
line the impact of each suite. That is, input data such as mea-
surements of CO; dry mole fraction and the a prior fluxes,
used as constraints based on Bayesian inference, are identical
for all runs. We exchangeably make use of the four combina-
tions of transport model components, the regional and global
models, in the two inversion systems. The impacts were eval-
uated using forward model runs to quantify the differences
in CO; concentrations (simulated with prior fluxes) and in-
version runs to quantify the magnitude of differences in the
flux space. The inversion setups and implementation are ex-
plained in the comparison protocel (Sect. 2.6).

21 Inversion framework

In the following description, we remind the reader about
the basic principles of the inversion schemes. For detailed
information about the mathematical schemes, the reader

https://doi.org/10.5194/acp-23-2813-2023

is referred o Ridenbeck (2005) for CSR and to Monteil
and Scholze (2021) for LUMIA. Both systems rely on the
Bayesian inference that accounts for observations and a pri-
ori knowledge to regularize the solution of the ill-posed in-
verse problem where a unique solution does not exist due to
the spatial scarcity of observations. Therefore, the optimal
state vector (x) is searched for in the Bayesian formalism by
minimizing the cost function J(x) that is typically composed
of the observational constraint term J.(x) and the a priori
flux constraint term Jy(x):

Jix)=J(x)+ Jp(x), (1)
where
1
Jyix)= E(x—xb)TB“ (x —xp). (2)
1
Jo(x) = E(H(x}—y)rQ"l(H(x)—y). @)

The a priori flux uncertainty defined in the covariance matrix
B limits the departure of the control vector (x) to the a pri-
ori flux vector (x). Similarly, the observational constraint is
weighted by the observational covariance matrix Q that con-
tains the so-called model-data mismatch error, including un-
certainty of measurement, representativeness, and transport.
This uncertainty is assigned to the diagonal of the matrix Q
for the respective sites based on the ability of the transport
model to represent the atmospheric circulation at such lo-
cations. H (x) represents the atmospheric transport operator
(i.e. calculated by STILT and FLEXPART in our inversions)
that determines the relation between fluxes and the modelled
tracer concentration, which corresponds spatially and tempo-
rally to a given vector of measurements y. Following the gra-
dient descent method, a variational algorithm is applied itera-
tively to reach the best convergence (global minimum) of the
cost function that satisfies the optimal solution of the control
vector. The default configurations for constructing the covari-
ance matrices of a priori uncertainty are slightly different in
CSR and LUMIA. A priori flux uncertainty is assumed to be
around 0.47 PgC yr~" over the full domain of Europe derived
from the global uncertainty (2.80PgC) assumed in the Car-
boScope global inversion for the annual biogenic fluxes (Ro-
denbeck et al., 2003). In CSR, this uncertainty is uniformly
distributed spatially and temporally in a way that the annual
uncertainty aggregated over the entire domain should arrive
at the same value. The uncertainty structure is fit to a hyper-
bolic decay function in space (Eq. 4) and to an exponential
function (Eg. 5) for the temporal decay as explained in Koun-
touris et al. (2015).

. (4)

ris)=

1+
a

HOGETL® (5)

Bl

The correlation length scales ds and dr applied to flux un-
certainties are chosen to be 66.4 km spatially and 30d tem-
porally, respectively, following Kountouris et al. (2018a) and
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Munassar et al. (2022). The spatial length in the zonal direc-
tion is set to be longer than that in the meridional direction
by a factor of 2 (anisotropic), owing to larger spatial climate
variability in the meridional as compared to zonal direction.

The spatio-temporal shape of the a priori uncertainty in
LUMIA is computed in a way that each control vector com-
prises weekly uncertainty calculated as the standard devia-
tion of NEE based on weekly flux variance; however, LU-
MIA agrees on the overall annually aggregated flux uncer-
tainty over the entire domain with CSR. A Gaussian function
of the spatial correlation decay (Eq. 6) is applied to the a pri-
ori uncertainty structure with a spatial length scale of 500 km,

ris) =tz_(i?)21 (6)

whereas the effective temporal decay was set to 30d (same
as in CSR). Given the difference in the spatial correlation de-
cay of the a priori uncertainty, LUMIA is set to draw larger
flux corrections in a broader radial area where stations ex-
ist following the Gaussian decay with a longer length scale
compared to the hyperbolic decay in CSR. In turn, the hy-
perbolic function has a larger impact in the further radial
distances than the Gaussian function does, regardless of the
longer spatial scale assumed with the Gaussian decay in a
factor of around 7.5 in comparison with the hyperbolic de-
caying function.

2.2 Atmospheric transport models

Surface sensitivities are calculated using the STILT (Lin et
al., 2003) and FLEXPART (Pisso et al., 2019) models at a
horizontal resolution of 0.25° and hourly temporal resolu-
tion. Both models simulate the transport of air masses via
releasing an ensemble of virtual particles at the locations
of stations. The virtual particles are transported backward
in time and driven by meteorological fields obtained from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). STILT particles are transported 10d backward
in time and forced by forecasting data obtained from the
high-resolution implementation of the Integrated Forecast-
ing System (IFS HRES). For the FLEXPART model in stan-
dard operation, particles are followed for 15 d backward in
time driven by ERA-5 reanalysis data. To keep the consis-
tency with STILT footprints, the backward time of FLEX-
PART footprints was limited to 10d in the inversions. After
this backward time integration, the particles are assumed to
leave the domain, even though a large number of particles
are expected to escape after a few days. To belter represent
air sampling in the mixed layer, day-time observations are
considered, except for mountain stations where night-time
observations are used instead (Geels et al., 2007). To ensure
best mixing conditions, temporal windows were considered
for simulating CO; dry mole fractions over stations as ex-
plained in Sect. 2.4 (Table 1). In addition, release heights of
particles are taken as the highest sampling level above ground

Atmos. Chem. Phys., 23, 2813-2828, 2023

at each measurement site. For high-altitude receptors, such as
mountains, a correction height is used in STILT in a way that
the actual elevation of the station can be represented in the
corresponding vertical model level (Munassar et al., 2022).
In FLEXPART, the elevation above sea level is taken as the
model sampling height.

2.3 A priori and prescribed fluxes

Three components of prior and prescribed surface-to-
atmosphere Aluxes of CO7 are obtained from (1) biogenic ter-
restrial fluxes, (2) ocean fluxes, and (3) anthropogenic emis-
sions and kept identical in both systems. Prior net terrestrial
COs exchange fluxes, net ecosystem exchange (NEE), are
calculated using the diagnostic biogenic model Vegetation
Photosynthesis and Respiration Model (VPRM) (Mahade-
van et al., 2008). VPRM calculates NEE at hourly temporal
and 0.25° spatial resolutions, and it provides a partitioning
of the net flux into gross ecosystem exchange (GEE) and
ecosystem respiration. Data obtlained from remote sensing
provided through the MODIS instrument and meteorological
parameters from ECMWF drive both quantities of the light-
dependent GEE and the light-independent ecosystem respi-
ration. The model parameters were also optimized against
eddy covariance data selected within the global FLUXNET
site network across Europe in 2007 (Kountouris et al., 2015).
For more details on the VPRM model, the reader is referred
to Mahadevan et al. (2008).

Ocean fluxes are taken from Fletcher et al. (2007), who
provide climatological fluxes at a spatial resolution of 57 x4°,
remapped to 0.25° to be compatible with the biosphere model
fluxes. In addition, anthropogenic emissions are taken from
the EDGAR_v4.3 inventory and are updated to recent years
according to British Petroleum (BP) statistics of fossil fuel
consumption, and they are distributed spatially and tempo-
rally based on fuel type, category, and country-specific emis-
sions, using the COFFEE approach (Steinbach et al., 2011).
The emissions are remapped to a 0.25° spatial grid and to an
hourly temporal resolution.

Biogenic terrestrial fluxes are optimized in the inversions,
while the ocean fluxes and anthropogenic emissions are pre-
scribed, given the better knowledge about their spatial and
temporal distribution in comparison with the heterogeneity,
variability, and uncertainty of the biogenic fluxes. Moreover,
in the absence of observational constraints that help discrim-
inate the contributions from the three categories, we chose
to prescribe the ocean fluxes and anthropogenic CO; emis-
sions. This is also justified by the fact that the observation
sites are located in areas where the biospheric flux influence
is expected to dominate the variability of CO; concentration,
but it means that errors in the fossil fuel or ocean fluxes might
be compensated by the inversions, resulting in changes in the
posterior NEE.

https://doi.org/10.5194/acp-23-2813-2023
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Table 1. Atmospheric sites used in the inversions.

Site code  Site name Coordinates STILT release  FLEXPART release  Time window — Uncertainty

(lat, long)®  height (magl) height (ma.g L)y (UTC)y {ppm}
SM3 Hyyuili 61.85, 24.29 125 125 10:00-14:00 15
BIS Biatystok 5323, 23.03 300 3000 10:00-14:00 15
FKL Finokalia 35.34, 25.67 15 15 10:00-14:00 L5
BAL Pallas 67.97, 24.12 12 12 10:00-14:00 15
PUL Fuijo 6291, 27.65 84 &84 10:00-14:00 15
uTo Utii, Baltic Sea 5978, 21.37 57 57 10:00-14:00 15
BIR Birkenes Observatory 56.389, §.25 3 3 11:00-15:00 25
BRS Beromiinster 4719, 8.17 212 212 11:00-15:00 15
DEC Delta de I'Ebre 40.74, 0.79 10 10 1100-15:00 L5
EEC El Estrecho 36.0586, —5.664 20 20 1100-15:00 15
GIC Sierra de Gredos 40.3457, ~5.1755 20 20 1100-15:00 25
HEI Heidelberg 49.417, 8.674 30 a0 1100-15:00 4
HP4 Hohenpeissenberg 4T.8011, 11.0246 300 131 11:00-15:00 1.3
ER2 Ersa 429692, 93801 40 40 11:00-15:00 1.3
HT3 Hyltemaossa 560969, 134189 150 150 11:00-15:00 15
HU4 Hegyhitsil 46.95, 16.65 115 15 11:00-15:00 15
15 Lspra 45.8147, 8.636 100 100 11:00-15:00 15
KR3 Kfedin u Pacova 49.572, 15.08 250 250 11:00-15:00 15
LMU La Muela 41,5941, —1.1003 80 7% 11:00-15:00 1.3
LMP Lampedusa 3553, 1262 10 0 1E00-15:00 15
LuT Lutjewad 534036, 6.3528 60 60 11:00-15:00 25
NO3 MNorunda 60.0864, 17.4794 100 100 11:00-15:00 15
V3 Svartberget 64.256, 19.775 150 150 11:00-15:00 1.3
TR4 Trainou 479647, 2.1125 180 180 11:00-15:00 15
OHP Observatoire de Haute Provence 43931, 5712 100 100 11:00-15:00 15
SA3 Saclay 467227, 2.142 100 100 11:00-15:00 15
LHW Laegern-Hochwacht 474822 83973 400 32 1100-15:00 25
BS3 Bilsdale 54359, —1.15 248 248 12:00-16:00 L5
RG2 Ridge Hill 51.9976, —~2.54 90 a0 12:00-16:00 1.3
TA3 Tacolneston 525177, 1.1386 185 185 12:00-16:00 15
WAD Weybourne, Norfolk 529502, 1.1219 10 10 12:00-16:00 15
oP3 Observatoire pérenne de I environnement 485619, 5.5036 120 1200 14:00-17:00 15
GAS Gartow 53.0657, 11.4429 341 34 14:00—18:00 1.3
LIN Lindenberg 521663, 14,1226 98 98 14:00-18:00 15
BIS Biscarrosse 443781, =1.2311 47 4T 14:00-18:00 25
CRP Carnsore Point 52.18, —6.37 14 14 1400-18:00 15
MHD Mace Head 53.3261, —9.9036 24 24 1400-18:00 15
MLH Malin Head 55355, -7.333 47 4T 14:00-18:00 1.3
JFI Jungfraujoch 46,5475, 79851 720 3570 (masl) 23000300 1.3
KAS Kasprowy Wierch 49.2325 199818 480 1989 (masl)  23:00-03:00 15
PUY Puy de Déme 457719, 29658 400 1465 (masl)  23:00-03:00 15
SI2 Schauinsland 4791,7.91 450 1205 (masl)  23:00-03:00 15
FTR Plateau Rosa 4594771 500 3480 (masl)  23:00-03:00 15
FD2 Pic du Midi 429372, 0.1411 1458 2877 (masl)  23:00-03:00 15
CMN Moate Cimone 44,1963, 10.6999 670 2165 (masl)  23:00-03:00 15

2.4 Observations

Measurements of COy dry mole fractions are collected
through ICOS, NOAA, and pre-ICOS stations across the do-
main of Europe provided by Drought 2018 Team and ICOS
Atmosphere Thematic Centre (2020). In total, datasets from
44 stations are used covering the domain of Europe in 2018,
in which a maximum number of stations is present compared
to the other years. Regarding model-data mismatch errors, in
LUMIA a weekly value of 1.5 ppm is assumed for all sites,
except for the Heidelberg site where 4 ppm was assumed due

https://doi.org/10.5194/acp-23-2813-2023

to the anthropogenic influence from the neighbourhood. Ta-
ble 1 denotes the weekly values of uncertainty used in CSR
for the corresponding sites. The uncertainty for the surface
sites is inflated to 2.5 ppm as a slight difference to LUMIA.
The inflation of uncertainty from weekly to hourly values 1s
basically calculated by multiplying weekly errors by /7 x n
(where n refers to the number of hours in the daily measure-
ments used in the inversion). The observations are mostly as-
similated as hourly continuous measurements and are taken
from the highest level, avoiding large vertical gradients near
the surface that are hard to represent in the transport mod-
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Table 2. List of the inversion setups.

Inversion system  Transport model  Global boundary condition  Identifier code

Flux uncertainty

Shape Decay

LUMIA FLEXPART ™S
LUMIA FLEXPART ™3
LUMIA STILT ™S
LUMIA STILT T™3
CSR STILT T™3
CSR STILT ™S
CSR FLEXPART ™3
CSR FLEXPART T™S

LF5 Variable Gaussian
LF3 Variable Gaussian
LS5 Variable  Gaussian
Ls3 Variable Gaussian
53 Flat Hyperbolic
55 Flat Hyperbolic
CF3 Flat Hyperbolic
CF5 Flat Hyperbolic

els. Model error in representing observations in the plane-
tary boundary layer (PBL) is expected to be largest when
the PBL is shallow. Therefore, for most sites, we considered
data only when the PBL was expected to be well developed,
i.e. during the afternoon, local time (LT). The exception is at
high-altitude sites, which tend to sample the free troposphere
during night (Kountouris et al., 2018b). The assimilated win-
dows are reported in Table 1.

2.5 Boundary conditions

Far-field contributions of CO> concentrations (originating
from sources outside of the regional domain) are taken from
global inversions. As default setups of the global runs, the
Eulerian transport model TM3 is used in the CarboScope
global inversion at 5° (long) x 4° (lat), while TM5-4DVAR
(Transport Model 5 — Four Dimensional Variational model)
is used to provide boundary conditions to LUMIA using the
global transport model TMS at 6° (long) x 4° (lat) (Baben-
hauserheide et al., 2015; Monteil and Scholze, 2021). Both
inversion systems apply the two-step scheme inversion, ex-
plained in Rédenbeck et al. (2009), in which a global inver-
sion is first used to estimate CO; fluxes globally (based on
observations inside and outside Europe). In a second step,
the global transport model is used to estimate the influence
of European CO3 fluxes on European CO; observations. That
regional influence is then subtracted from the total concen-
tration to obtain a time series of the far-field influence di-
rectly at the locations of the observation sites. This prevents
introducing biases by passing concentration fields from one
model to another. For detailed information about the ap-
proach methodology, the reader is referred o Ridenbeck et
al. (2009).

2.6 Comparison protocol

The results of the study are based on eight variants of in-
versions differing in global and regional transport models, as
well as in inversion systems, as explained in Table 2. This im-
plies that the two inversion systems (CSR and LUMIA) make
use of two regional transport models (STILT and FLEX-

Atmos. Chem. Phys., 23, 2813-2828, 2023

PART) and two global transport models (TM3 and TMS),
which represent the boundary conditions (background) cal-
culated from two global inversions. Hereafter, the identifier
codes (see corresponding column in Table 2) will be used
to refer to the individual runs within the inversion ensem-
ble. For instance, to highlight the impact of regional trans-
port models, we compare the inversions that only differ in
regional transport models, regardless of the inversion system
or boundary conditions used, such as C53 and CF3 or LS5
and LF5. Similarly, we use the same specifications of trans-
port models (indicated through the identifier codes) for the
forward runs to outline the differences in CO» concentrations
simulated using prior fluxes with different transport models.
In this case, using a different system should not result in dis-
crepancies as long as prior fluxes remain identical. In terms
of system-to-system comparison, the impact of flux uncer-
tainty should be taken into account as the prior error struc-
ture is specific for each inversion system. With that said, this
has been investigated by conducting additional tests in CSR
and LUMIA using identical uncertainties with flat shape and
Gaussian correlation decay.

3 Results

Estimates of the regional biosphere—atmosphere fluxes over
the domain of Europe are calculated using CSR and LU-
MIA for 2018 from an ensemble of eight inversions as listed
in Table 2. Generally, all the inversions showed that the
estimates of NEE are constrained by the atmospheric data
as can be seen from the positive flux corrections made by
the inversions in comparison with the a priori fluxes calcu-
lated from the biosphere flux model VPRM, which obviously
overestimates COz uptake, specifically during the growing
season (Fig. la). This is also obvious in the ensemble-
averaged annual estimates of posterior fluxes —0.29 PeC ver-
sus —1.49PgC in the a priori fluxes (Fig. 1b). However,
the spread among posterior estimates is still relatively large,
ranging between —0.72 and 0.20PgCyr~! for the annual
estimates, which is larger than the a prior uncertainty of
0.47PgCyr~!. Likewise, the mean standard deviations of
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the monthly estimates over the ensemble of inversions is
0.72PgCyr~!. The largest deviations occur between inver-
sions that differ by the regional transport models (e.g. CS3
versus CF3 or LSS versus LF3). In addition, the seasonal
amplitude was found to be different between the STILT and
FLEXPART inversions. The STILT-based inversions led to
a larger amplitude of posterior NEE than the FLEXPART-
based inversions.

In terms of spatial distributions, the base cases of CSR
and LUMIA inversions, i.e. CS3 and LF5 (default configu-
rations of both systems), exhibit good agreement in predict-
ing smaller uptake of CO, compared to the a priori fluxes
(Fig. 2a—c). The magnitude of flux corrections suggests addi-
tional sources inferred from the atmospheric signal, as shown
in the innovations of fluxes (Fig. 2d, ¢). Major corrections
are obtained over western and southern Europe where the
inversions point to an overestimation of the CO, uptake by
the prior biogenic fluxes. The weak annual uptake of CO; in
2018 was exceptional and caused by the drought episode in
Europe (Bastos et al., 2020; Rédenbeck et al., 2020; Thomp-
son et al., 2020), which even turned some areas in central,
northern, and western Europe into a net source of CO,. The
discrepancies between CS3 and LF3 noticed in the innova-
tions, e.g. in northern France, the Netherlands, and south-
eastern UK, are attributable to the combination of differences
in regional transport models, lateral boundaries, and system
configurations.

In the following, we will focus on separating and guan-
tifying the contributions of such differences caused by each
driver.

3.1 Impact of mesoscale transport

Inversions that differ in the regional transport models (STILT
and FLEXPART) demonstrate the largest differences in pos-
terior fluxes, resulting in a relative contribution of about
61 % of the total differences compared to the boundary con-
ditions and inversion systems. The differences in monthly
estimates of NEE calculated with CS3 and CF3 inversion
setups that vary in regional transport models are shown in
Fig. 3a (“transport™). Additionally, the discrepancies caused
by transport have an obvious seasonal pattern. The differ-
ences between CS3 and CF3 peak in November and June,
reaching 2.11 and —1.82PgCyr~!, respectively. The best
agreement between both inversions is obtained during the
transitional months (August and April) with differences of
—0.10 and —0.18 PgCyr~", respectively. This might be at-
tributed to the decline of the net flux magnitude during these
months.

Furthermore, we assessed the impact of atmospheric trans-
port in the simulations of COz concentrations, because this
directly translates into differences in the optimized fluxes.
These simulations were caleulated using the total compo-
nents of prior fluxes (biosphere, ocean, and fossil fuel emis-
sions) with STILT and FLEXPART in forward model runs to
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sample the atmospheric concentrations at hourly time steps
at the station locations across the site network. Note that
since all runs use identical prior fluxes, it does not mat-
ter for the differences whether the prior fluxes were precise
enough to reproduce the true concentration or not. Figure 3b
(“transport™) illustrates the monthly differences in the for-
ward simulations between STILT and FLEXPART averaged
over all observational stations. Similarly to the discrepancies
in the optimized fluxes, the differences in the forward simu-
lations demonstrate a dominant impact of the regional trans-
port model, preserving the same temporal pattern as seen in
the flux differences but with opposite signs. The absolute dif-
ference ranges from 0.39 to 4.37 ppm when computed for the
monthly means throughout all the sites. Geels et al. (2007)
even found a larger spread up to 10 ppm when caleulated
with five transport models over 10 stations distributed across
Europe. The notably large difference reported in that study
is likely attributed to the large discrepancies in the model
configurations, especially regarding the horizontal resolution
and vertical levels used. The harmonized configurations used
in STILT and FLEXPART lead to a reasonably consistent
representation of the atmospheric variability at synoptic and
diurnal timescales. The largest differences are observed dur-
ing November and May with —4.37 and 3.60 ppm, respec-
tively. On the other hand, the smallest differences were found
o be —0.39, —0.42, and 0.56 ppm during September, April,
and August, respectively. These results suggest a maximum
impact of the mesoscale transport during the growing season
and winter, while the impact converges to the minimum dur-
ing transitional months such as May and September. Over-
all, the differences in posterior fluxes are consistent in the
timing with the differences in the simulated concentrations
computed using the prior fluxes.

Further diagnostics of model-data mismatches are pro-
vided in the Supplement, indicating the performances of
STILT and FLEXPART with respect Lo the observations us-
ing prior and posterior fluxes across the site network at
hourly, weekly, and yearly time steps (see Fig. 1§ and Ta-
ble 18).

In terms of the spatial discrepancies in annual flux esti-
mates, using STILT generally leads to predicting a larger
sources of COz in the regional inversions, in particular over
central Europe and the UK compared to using FLEXPART
(Fig. 4, “diff: transport”). In turn, inversions using FLEX-
PART suggest less uptake over northern Italy, Switzerland,
and south-eastern France. However, this impact refers to a
spatial pattern of transport differences that might be caused
either by meteorological data or by problematic sites that are
hard to represent by transport medels. Some areas such as
north-western Italy exhibit a persistent impact over time as
shown in Fig. 4 (“SD: transport™), which shows the stan-
dard deviation of monthly differences calculated for the CS3
and CF3 inversions. In terms of temporal variations, the in-
versions performed with different regional transport models
indicate larger monthly flux variations in comparison with
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Figure 1. Panel {a) refers to a posteriori monthly NEE estimated using eight inversions, including a priori NEE shown in black, with
CSR (solid lines) and LUMIA (dashed lines), and panels (b) denotes the comresponding annually aggregated fluxes. Orange and red colours
correspond to TM3, and dark or light blue correspond to TMS. Orange and light blue colours refer to STILT, and red and dark blue refer to

FLEXPART.

Figure 2. Panels (a)-{c) show the spatial distributions of annual
NEE estimated with the base inversions C83 and LF35, as well as
their prior. Panels (d) and (e) depict the innovations of fluxes cal-
culated for the inversions CS3 and LF5. Green circles denote the
locations of observational sites.

those differing in global models and inversion systems (see
Fig. 4, “SD: background” and “SD: system™).

Figure 5 shows the spatial flux differences together with
differences in prior concentrations simulated using STILT
and FLEXPART during June and December. Note that the
differences in NEE, to a large extent, agree in their spatial
patterns with the differences in prior concentrations calcu-
lated over the station network. In addition, there are notably
particular areas that exhibit opposite signs of the spatial im-
pact in the differences in posterior fluxes and prior concen-
trations such as western Europe during June and northern
Europe during December. One important difference between
STILT and FLEXPART is that the STILT model has higher
sensitivities during summer than FLEXPART, while the op-
posite holds true during winter. However, there are excep-
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Figure 3. Differences in optimized fluxes (a) and prior concentra-
tions (b) calculated with the regional transport models STILT and
FLEXPART (C53-CF3) and background provided through TM3
and TMS5 (C83-C55). “system” refers to the differences between
CSR and LUMIA inversion for optimized fluxes (C85-LS5).

tiens at individual sites such as Weybourne (WAQ) in the
UK and Ispra (IPR) in Italy, indicating either difficult terrains
that cannot be well represented by the models or real synop-
tic features that are resolved by one model but not by the
other. The differences in forward simulations are inversely
manifested in the posterior flux differences as large surface
sensitivities result in smaller posterior flux corrections and
vice versa. In this case, STILT computes higher surface sen-
sitivities than FLEXPART in June; therefore, the CS3 inver-
sion needs to adjust the prior fluxes less to fit the observa-
tiens. On the contrary, a weaker uptake is suggested by the
STILT inversion during December over Europe, except for
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Figure 4. Panels (a)-(c) indicate differences in annual posterior
NEE estimated with STILT and FLEXPART models, referred to
as “transport” (CS3-CF3); TM3 and TMS5 are referred to as “back-
ground™ (CS83-CS5); and CSR and LUMIA are referred to as “sys-
tem” {CF3-LF3). Panels (d)-(f) demonsirate the standard deviations
of the corresponding monthly differences.

CS3ILFY: june

BT 5 L 3 1o
Aprior conc. (ppm)

-1 5 ] 3 1o
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Figure 5. Spatial differences of posterior NEE estimated from the
inversions C53 and CF3 with STILT and FLEXPART transport
models during June and December; filled circles indicate the dif-
ferences in prior concentrations at the locations of sites (horizontal
legend explains the magnitude of differences).

the abovementioned areas around northern Italy and south-
eastern France. The differences appeared to be larger during
the months of growing season and winter, following the sea-
sonal amplitude of CO3.

3.2 Impact of lateral boundary conditions

The differences in lateral boundary conditions were found
to account for about 27 % of the total differences resulting
from the regional transport, lateral boundaries, and systems.
This is a non-negligible contribution, albeit smaller than the
regional transport contribution. The impact of using differ-
ent far-field contributions was analysed by assessing the dif-
ferences in the posterior NEE estimated with CS83 and CS35
inversions, which use boundary conditions from the global
inversions CarboScope and TM5-4DVAR, respectively. Fig-
ure 3 (“background”) shows consistent differences over time
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between these inversion estimates aggregated over the en-
tire domain of Europe. Larger flux corrections are suggested
by CS5 than by CS3. This is because the global TM3-based
inversion predicts higher influence at the lateral boundaries
than the global TM5-based inversion does. Discrepancies in
the monthly posterior fluxes between CS3 and CS35 inver-
sions amount to a range of 0.11 to 0.64 PgCyr~! and ab-
solute differences with a mean of 0.40PgC yr—!. Monthly-
mean differences in COz concentrations throughout all sites
simulated using TM3 and TM5 boundary conditions were
found to range from 0.17 to 0.93ppm with a mean of
0.55 ppm.

The distributions of spatial differences of posterior fluxes
indicate a homogeneous impact across the full domain of
Europe (Fig. 4, “diff: background”). Likewise, the standard
deviations of the monthly posterior fluxes obtained from
CS3-CS5 ("SD: background) denote flat temporal variations
throughout all the grid cells. These findings confirm the re-
sults obtained in Fig. 3 (“background”). This impact is con-
sistent in space and time, with coherent deviation over all
months, and is therefore expected to not affect the seasonal
and interannual variability.

3.3 Impact of inversion systems

CS3 and LFS5 differ by more than their regional transport and
boundary conditions. In particular, the uncertainties are, by
default, set up differently in CSR and LUMIA. The two sys-
tems optimize a different set of variables (weekly NEE ofi-
sets in LUMIA and 3-hourly NEE in CSR). Here we compare
CS5 and LS5, which differ by their inversion systems but not
by their transport model and boundary conditions. The dif-
ferences in fux estimates between CS5 and LS5 inversions
amount to 12 % relative to the total differences, including
that caused by the mesoscale transport and lateral bound-
aries. This impact is, however, dependent upon system con-
figurations, in particular the way the prior flux uncertainty is
prescribed. The absolute monthly differences between CS3
and L85 range between 0.06 and 0.56 PgC yr~! with a mean
of 0.15PgCyr~! (Fig. 3, “system”). This demonstrates the
smallest differences amid inversions in comparison with the
transport and lateral boundary differences, which yielded ab-
solute monthly means of 1.27 and 0.40PgCyr—!, respec-
tively. The differences peaked during May, June, and Novem-
ber, while the differences remained rather small during the
rest of the year. LSS infers —6.42 and 2.39 PgCyr~" during
June and December, respectively, which is higher than CS3
estimates by 0.33 and 0.07 PgC yr—'. Generally, LSS predicts
slightly larger CO; releases compared to CS3, which is par-
tially due to differences in how uncertainties are assumed in
both systems.

The impact of uncertainty definition is quantitatively as-
sessed by using identical uncertainties for model—data mis-
match as well as for prior fluxes in both CSR and LUMIA.
The spatial flux corrections (innovation of fluxes) shown in
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Fig. & denote quite good agreement between CSR and LU-
MIA estimates. In this experiment, the differences in June
and December decreased to 0.23 and 0.04 PgC yr—!, respec-
tively, in comparison with the corresponding differences ob-
tained from the default configurations of both systems. That
is to say, the impact of uncertainty definition alone amounts
to 0.09 and 0.03PgCyr~! in June and December, respec-
tively, leading to approximately 30 % and 50 % of the over-
all system-to-system differences. The rest of the differences
may be attributed to differences in the convergence of the
cost function to reach the minimum values.

The spatial differences shown in Fig. 4 “diff: system™ al-
ternate between positive and negative differences over the
domain (but these tend to compensate when aggregating the
flux estimates over the full domain). It should be noted that
the inversion systems mainly differ in the definition of the
shape and structure of the prior uncertainty. Therefore, ap-
plying different structure and magnitude of prior flux uncer-
tainty in the inversions may inflate the error in CO7 fux es-
timates over the underlying regions in the domain, in partic-
ular if the spatial differences do not cancel out. In addition,
the corresponding standard deviations of monthly estimates
(“SD: system™) show large temporal variations, specifically
over areas that have large spatial differences. The spatial re-
sults indicate that the impact of inversion systems should not
be neglected, especially at national and subnational scales.

4 Discussion

The regional inversions computed over Europe showed that
posterior NEE is largely derived from the atmospheric sig-
nal. The seasonality of posterior NEE, inferred from the at-
mospheric signal, is strongly impacted by differences in the
representation of atmospheric transport. Given the identical
priors and observational datasets used in the inversions, us-
ing different mesoscale transport models leads to 61 % of
the differences in posterior fluxes in comparison with 27 %
and 12% of the differences caused by the use of different
boundary conditions and different inversion systems, respec-
tively. In agreement with these results, Schuh et al. (2019)
also found a large impact of mesoscale transport on estimat-
ing CO; fluxes. Hence, any error in the atmospheric trans-
port is translated into posterior fluxes as flux corrections. For
instance, C53 and L83 suggest annual CO; flux budgets of
—0.20 and —0.72 PgC, respectively, indicating a difference
of .51 PgC in the annual flux budget. This difference is even
larger than the prior flux uncertainty (0.47 PgC). The trans-
port also showed a large impact on flux seasonality, lead-
ing to a difference of 49 % relative to the mean seasonal
cycle. However, Schuh et al. (2019) found smaller differ-
ences, amounting to about 10 %—15 % of the mean seasonal
cycle. Unlike the regional transport model error, the impact
of boundary conditions does not show any striking seasonal-
ity and thus can be thought of as a bias in dry mole fractions.

Atmos. Chem. Phys., 23, 2813-2828, 2023

The consistency of the lateral boundary impact over time and
space is in agreement with results of lateral boundary un-
certainties assessed by Chen et al. (2019) using four differ-
ent global transport models, albeit over a different domain.
Therefore, such an impact may be dealt with as a constant
correction in mixing ratios before performing the regional in-
versions, which are potentially site-specific corrections. But
there should be a reference for these corrections, e.g. taking
the most robust model that has been validated against obser-
vations or simply a factor of the relative mean of the relevant
modelsfapproaches. Although the inversion systems showed
the smallest differences in CO, flux estimates, the specifica-
tion of the control vector (regarding the construction of co-
variance matrices) that devises the flux correction can result
in larger differences, specifically in the spatial flux patterns.

The large number of stations within central and western
Europe leads to a strong observational constraint that is re-
flected in the spatially optimized fluxes over that area. There-
fore, large spatial differences between the inversions are pro-
nounced around areas where stations exist, precisely for grid
cells that have non-zero footprints. The large temporal varia-
tions indicate a systematic error that possibly arises from the
transport models themselves as well as from meteorological
forcing data. Additionally, systematic differences between
transport models occur due to discrepancies in representing
vertical mixing and horizontal and vertical resolution of the
models (Peylin et al., 2002). Gerbig et al. (2008) found large
discrepancies in derived mixing heights between meteoro-
logical analysis from ECMWF and radiosonde data, which
reached about 40 % for the day-time and about 100 % for the
nocturnal boundary layer. The vertical mixing in tracer dis-
persion models was found to result in a significant variability
in methane emission estimations (up to a factor of 3) given
the same meteorology as investigated by Karion et al. (2019).

Drivers of STILT-FLEXPART differences

Although STILT and FLEXPART are run at the same
spatio-temporal resolution, employing similar schemes to
parametrize the atmospheric motion unresolved by meteoro-
logical forcing data such as turbulence, and similar diagnos-
tics to determine mixing heights, they still exhibit large spa-
tial and temporal differences. A first assumption was that the
differences between STILT and FLEXPART could be caused
by differences in the calculation of mixing height. However,
we did not find a correlation between the differences in mix-
ing heights, calculated with the two models, and the differ-
ences in prior concentrations (Fig. 6). This finding concludes
that the discrepancies in representing mixed layer heighis do
not explain the major differences in simulated CO; concen-
trations nor the differences in footprints.

The second assumption was that differences in the forcing
data of meteorological products might lead to the discrep-
ancies in both models, given that STILT uses meteorologi-
cal parameters from IFS HRES, while FLEXPART uses the
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Figure 6. Scatter plot of differences of prior concentrations and mixing heights calculated with STILT and FLEXPART models (i.e. STILT-

FLEXPART on the x and y axes). Red lines indicate the slopes.

ERA-S reanalysis. Results in Fig. 7, “meteo”, indicate that
using different meteorological data results in pronounced dif-
ferences when the FLEXPART model was forced by opera-
tional forecast data instead of the ERA-5 reanalysis. These
differences notably occur during the time of net CO; re-
lease, corresponding to quite small differences during the
time of growing season. This, however, only explains a small
part of the overall differences (shown in Fig. 7, “base™) that
dominate all the months except August and September. In a
previous study, Liu et al. (2011) concluded that uncertain-
ties in meteorological fields lead to a significant contribu-
tion to the total transport error, as well as to an underesti-
mation of the vertical turbulent mixing even when the same
circulation model and mixing parameterizations were used
to reconstruct vertical mixing from a single meteorological
analysis. Tolk et al. (2008) also found meteorology to be a
key driver of representation error, which varies spatially and
temporally. They indicated that a large contribution to rep-
resentation error is caused by unresolved model topography
at coarse spatial resolution during night, while convective
structures, mesoscale circulations, and the variability of CO»
fluxes dominate during day-time. Deng et al. (2017) found
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that assimilating meteorological observations such as wind
speed and wind direction in transport models significantly
improved the model performances, achieving an uncertainty
reduction of about 50 % in wind speed and direction, espe-
cially when measurements in the mixed layer were assim-
ilated. Nonetheless, they concluded that the differences in
CO; emissions reached up to 15 % at local-scale corrections
after inversion and were limited to 5% for the total emis-
sions integrated across the regional domain of interest. These
results refer to the limited impact of meteorological data.
Note however that the main aim of this experiment was to
test whether differences in driving meteorological data could
explain the differences between STILT and FLEXPART, but
we are not assessing the overall impact of meteorological un-
certainties. Doing so would in particular require testing non-
ECMWF meteorological products.

Furthermore, we tested the possible impact of surface
layer heights (the height up to which particles are sensitive
to the fluxes) that may affect the particle dispersion, pro-
vided that STILT relies on the assumption of defining the
surface layer as a half of the mixed layer height, while in
FLEXPART it is defined as a fixed height of 100 m (these
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Differance in prior concontration (ppm)

Figure 7. Differences in prior concentration simulated at LIN with
STILT and FLEXPART using different configurations. “s_layer”,
vellow line, refers to the difference calculated with STILT using
twio assumptions of defining the surface layer height, once with the
default as 0.5 of the mixed layer and once with 100m as used in
FLEXPART, “meteo”, red line, indicates the differences calculated
with FLEXPART using two different types of meteorological data,
IFS (the STILT default) and ERA-5; “model”, blue line, denotes the
differences calculated with STILT and FLEXPART, given identical
meteorological data (IFS) and surface layer height (100 m); “base™,
black line, refers to the base configurations of STILT and FLEX-
PART encompassing all possible differences between models - i.e.
(1) STILT with IFS forecasting data and a surface layer height as
0.5 times that of the mixed layer height and (2) FLEXPART with
ERA-5 reanalysis and the surface layer height of 100 m.

are default configurations of the models). In this experiment,
STILT was run with a surface layer height of 100 m, so the
impact of the surface layer on CO; simulations is outlined by
the comparison with another run using the default configura-
tions of STILT. The differences in simulated CO; concentra-
tions due to differences in the surface layer were found to be
quite small (Fig. 7, “s_layer") and, therefore, can be negligi-
ble in both magnitude and temporal pattern compared (o the
overall differences. However, varying the models STILT and
FLEXPART with identical meteorological data and identi-
cal surface layer leads to the largest differences, in particular
during the growing season months and winter months (Fig. 7,
“model”). As a result, model-to-model differences largely
affect the simulations of CO concentrations and are likely
originating from the transport model schemes. It 1s clearly
noticeable that the overall differences combine the underly-
ing differences of “model”, “meteo”, and “'s_layer” and are
yielded as the arithmetic summation of this partitioning.

How do our results explain the range of uncertainties
reported in scientific literature?

To shed more light on the drivers of differences in opti-
mized CO; fluxes, we analyse the spread in our inversions
in line with the spreads in other inversion estimates that were
reported in two previous studies over the same domain of
Europe. Figure 9 shows the spreads amid the three studies:
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Figure 8. Innovation of fluxes calculated from CSE and LUMIA
using identical uncertainties of prior flux and measurements. The
uncertainty flux shape was flat and the decaying spatial correlation
was fit to a Gaussian function with 500 km scale. FLEXPART and
TMS5 models were used in this experiment.

(1) eight inversions conducted in our results denoted as “En-
semble”, (2) six inversions of the EUROCOM experiment
(denoted as “EUROCOM™) done by Monteil et al. (2020),
and (3) five inversions of the drought study by Thompson et
al. (2020), focusing on analysing the 2018 drought impact
on NEE, denoted as “Drought”. Note that in “"EUROCOM™
and “Drought”, the tracer inversions differed in the atmo-
spheric regional transport models, the definition of bound-
ary conditions, the definition of control vector, the selection
of atmospheric datasets, and the a priori fluxes. These dif-
ferences are expected to span a large range of uncertainty
sources in the posterior NEE. The climatological monthly es-
timates of NEE were averaged over “EUROCOM” inversion
members for the respective years 2006-2015, except for one
inversion (NAME), which was limited 1o 2011-2015. “En-
semble” and “Drought™ were confined to the analysis year
of 2018. The monthly NEE estimates were calculated for
all ensembles as the average over their respective inversion
members. The annual mean of NEE estimated with “EU-
ROCOM", “Ensemble”, and “Drought™ amounts to —{0.19,
—0.29, and —0.05PgC with standard deviations of (.34,
0.29, and 0.46 PgC, respectively.

The spreads amid each ensemble of inversions are illus-
trated by the min and max values bounded around the mean
on the error bars (Fig. 9). The monthly mean of NEE esti-
mates shows a good consistency in all the ensembles. The
spreads are also relatively comparable, albeit variable over
months. For instance, "EUROCOM" and “Drought” exhibit
larger spreads during the growing season (April-August),
while “Ensemble” has a larger spread in the rest of the
months - i.e. during winter. Note that all ensembles experi-
ence large spreads during June and May. Although the partic-
ipating inversions to “EUROQOCOM” and “Drought™ had dif-
ferent configurations, the spreads were not largely different
from our inversion spreads. This implies that the use of dif-
ferent atmospheric transport models could account for a large
fraction of differences in posterior fluxes, although differ-
ences in the definition of uncertainty covariance matrices and
lateral boundary conditions likely contribute as well. More-
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5.0 spatially and temporally, which can be considered as bias-
like. The differences arising from using different inversion

Jan Feb Mar Apr May Jum Jul Aug Sep Oct Mev Dec systems integrated over the entire domain of Europe were on

Figure 9. Comparison of monthly NEE estimates calculated as the
mean of six inversions taken from Monteil et al. (2020), denoted as
“EUROCOM®™; eight inversion members conducted in our study (se-
tups listed in Table 2), denoted as “Ensemble”; and five inversions
used in Thompson et al. (2020) for the 2018 drought study, denoted
as "Drought”. The error bars refer to the spreads (min/max}) over the
respective members amid each ensemble of inversions.

over, the discrepancies in “EUROCOM™ and “Drought™ es-
timates are expected to be partially caused by using different
atmospheric datasets in the inversion systems. Munassar et
al. (2022) found that posterior fluxes can be more sensitive
to changing the number of stations than changing the prior
flux models.

5 Conclusions

Estimating atmospheric tracer fluxes through inverse mod-
elling systems has been widely used, in particular for target-
ing the major greenhouse gases (GHGs) to improve the guan-
tification of natural (both terrestrial and oceanic) sources and
sinks. Here, an analysis of differences in posterior fuxes
of CO; was carried out using inversion systems deploy-
ing different regional transport models. The difference be-
tween minimum and maximum spreads for annually inte-
grated fluxes was found to be 0.92 PgC yr—! for the ensemble
range of 0.20 and —0.72 PgC yr—!, with a mean estimate of
—0.29 PgC yr~! calculated over the full domain of Europe in
2018. We tested the regional transport, the boundary condi-
tions, and the inversion systems. The regional transport ac-
counts for the largest part of the discrepancies in the opti-
mized fluxes as well as in the estimation of CO»2 concentra-
tion. Temporal and spatial differences in posterior fluxes are
consistent with the differences in simulated CO3 concentra-
tion sampled with STILT and FLEXPART over the station
network. They demonstrate a spatial pattern over certain ar-
eas during June and December, suggesting rather systematic
differences between STILT and FLEXPART. The differences
in the regional transport are mainly caused by the transport
schemes, while meteorological forcing data partially con-
tribute to these differences, especially during the months in
which net release of CO2 occurs. However, the differences in
CO, simulations did not show large sensitivities to other pa-
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the contrary rather small, once differences such as the trans-
port model and the uncertainties are controlled for. However,
such an impact is partially a result of applying different struc-
ture and shape in the prior flux uncertainty, while the rest
may be attributed to differences in the cost function conver-
gence to reach the minimum. This reflects the importance of
the way the uncertainty is prescribed in the tracer inversion
systems.

The divergence in CO; flux estimates resulting from swap-
ping the regional transport model emphasizes the need for
further evaluation of atmospheric transport models in order
to improve the performance of the models. At the same time,
it is important to realistically account for the transport errors
in the tracer inversions. Errors in meteorology parameters
assimilated in transport models as forcing data should also
be accounted for explicitly, potentially through making use
of an ensemble of meteorology data to estimate such errors.
Despite the non-negligible difference between inversion sys-
tems, this study indicates the importance of following a com-
mon inversion protocol when reporting flux estimates from
different inversion frameworks.

Code and data availability. The simulations of the ensemble
of inversions (a posteriori NEE calculated using CSR and
LUMIA) and their respective prior fluxes can be accessed
from https:/idoiorg/10.18160VQE4G-TPTT (Munassar and Mon-
teil, 2023). The codes used to create the figures can be made avail-
able upon request to the corresponding author. The atmospheric
datasets of CO7 dry mole fractions are available at the ICOS8 Carbon
Portal and can be accessed from https:/doi.org/10.18160/ERES-
9D4&5 (Drought 2018 Team and ICOS Atmosphere Thematic Cen-
tre, 2020).

Supplement. The supplement related to this article is available
online at: https:/idol.org/10.5194/acp-23-2813-2023-supplement.
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8 Appendix: CHs inverse modelling intercomparison
protocol

Protocol for the intercomparison of national CH,
emissions estimated by inverse modelling systems for
Western Europe — Phase 1

- version November 2021 -
L. Florentie, S. Houweling

1. Goal

This CHa inversion intercomparison effort aims at assessing the constraints of atmospheric
measurements on national methane fluxes, in particular the long-term trend in those
emissions. The main focus of this intercomparison is on national CHs emission estimates in
(Western) Europe (including separation into anthropogenic and natural emissions) and their
uncertainties, as well as the added value of satellite-based XCH4 observations in this respect.
In addition, we aim to formulate benchmarking procedures and best practices for inversion-
based emission estimates.

We will perform sensitivity experiments to search for answers to the following questions:

- What is the uncertainty range of inversion-optimized national CHs emissions? Is this
as expected given the uncertainties of input datasets, observations, transport models
and the findings in other research efforts (e.g. previous intercomparison efforts and
the work done in other CoCO2 work packages)?

- How does the uncertainty in the absolute emissions compare to that of year-to-year
changes and the long-term trend? Are inversions capable of robustly resolving
changes in national emissions on the time-scale relevant for the global stock take?

- What validation measurements and benchmarking metrics are needed to quantify the
performance of different inversion systems?

- Can we formulate guidelines and best practices for atmospheric inversion setups that
are general enough to be used by non-scientific parties, and that will yield consistent
results w.r.t. national CH4 emission estimates?

- What is the readiness level of inversion systems for use of the CO2M (which includes
XCHg observations) in refining CHs emission reporting?

The desired outcome of this intercomparison consists of a top-down assessment of trends in
national methane emissions and their consistency with bottom-up reporting. This includes
the formulation of a set of benchmarking methodologies, performance metrics, and best-
practices for regional emission inversions.

2. Relation to the VERIFY CH4 inversion intercomparison

The current effort is closely linked to the experiment performed in work package 4 of the
VERIFY project. Both efforts investigate the ability of regional inversion frameworks to
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estimate CHa fluxes in Europe. However, this experiment extends the effort of the VERIFY
project in the sense that

(i) we are particularly interested in national emission estimates, and the role of
atmospheric inversions for verification of those estimates,

(ii) we will conduct a 2-stage assessment: the first stage focusses on the use of ICOS
surface data, whereas the 2"¢ stage extends this with the use of satellite
observations. Moreover, phase 2 will be used to test findings/guidelines from the
first round of inversions.

(iiij  this assessment continues beyond the end of the VERIFY project, allowing us to
study more recent years in the 2"¢ phase. This facilitates a better assessment of
satellite-based inversions, but also lets us prepare for and eventually include the
first global stock take.

(iv) we explicitly welcome participation from groups not involved in the VERIFY project
to increase the size of the ensemble of models and inversion methods.

To minimize the effort for research groups, this experiment starts from the same basis as the
VERIFY intercomparison. This implies that inversions performed to participate in the VERIFY
intercomparison will automatically satisfy the requirements for participation in the first phase
of this experiment as well, although some additional output is requested to allow for the
specific analyses that we intend to perform for the current study.

The specifications for this first phase can be found in the current protocol document, which
is based largely on the VERIFY protocol. We therefore gratefully acknowledge the large effort
done by the VERIFY team to set up this protocol, to gather and produce input datasets, and
to harmonize the observation datasets.

3. Overview of the experiment

An important aim of this study consists of the definition of a benchmarking strategy to assess
the performance of different emission estimates, and the formulation of best practices to
define country emission totals. This study will therefore consist of 2 modelling & analysis
phases:

- Modelling phase 1: National emission estimates based on atmospheric CH, inversions
using surface measurements, according to the protocol described in this document.

- Analysis phase 1: Assessment of the submitted results, with focus on uncertainty
reduction due to the observational constraints, the detection of long-term trends, and
the impact of the performance of the atmospheric transport model. This phase will
result in an updated benchmarking strategy and formulation of a first version of best
practices (in consultation with the modelling groups).

- Modelling phase 2: New round of inversions according to an updated protocol (based
on the outcome of phase 1). In this round the inversions will at least be extended (we
aim for 2021). It includes the possibility to rerun the full period for those groups that
wish to make changes to their setup, according to the new protocol. In this round we
will also strongly encourage (new) submissions based on satellite-based XCH,
observations.
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- Analysis phase 2: This analysis round will strongly focus on the added aobservational
constraint due to the availability of satellite observations. Moreover, the preliminary
findings and best practices as resulting from phase 1 are tested. The desired outcome
of this phase consists of the formulation of a set of benchmarking methodologies,
performance metrics and best-practices for national CH, inversion-based emission
estimates. Our findings will be written down in a technical report and a scientific
publication.

We strongly encourage groups that participate in modelling phase 1 to also participate in
modelling phase 2, for consistency of the analysis phases. New submissions for modelling
phase 2 only are welcomed as well.

4. Timeline
When? What?
Nov., 2021 Distribution of intercomparison protocol and input datasets for phase 1

to the modelling community

March 1, 2022 | Deadline for submission of inversion results for phase 1 (<= 2018)

April, 2022 Discussion with the modelling groups about the results of phase 1

Oct., 2022 Distribution of intercomparison protocol and input datasets for phase 2
to the modelling community

April 1, 2023 Deadline for submission of inversion results for phase 2 (<= 2021)

June, 2023 Discussion with the modelling groups about the results of phase 2

5. Domain definition (spatial & temporal)

The regional inversions should cover at least the area from 15W to 35E and 35N to 70N.
Modelers are free to choose the spatial resolution they deem most appropriate. National
emission totals are to be provided for at least the EU27 countries and the UK.

The inversions should cover as many years as possible in the range 2005-2018. If it is not
possible to provide results for the full period it is preferred if groups submit results for a
selection of (separate) years, chosen such as to cover the full period as good as possible, and
including at least the years 2008, 2013 and 2018. This way we can still study the trend in
emissions.

6. Input Data

6.1 Prior CH; fluxes
An overview of the prior total CH, fluxes that we expect modelling groups to use for this

experiment is given below in Table 1. This is the same dataset as used for the VERIFY
experiment. The fluxes area available on our Research Drive, both on monthly 0.25°x 0.25°
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Table 1: Prior CHa fluxes

Category Data source Original Resolution Time period
Peatlands, Mineral soils JSBACH- 0.1°x 0.1° daily 2005-2020
(emissions & uptake), HIMMELI*

inundated

Inland water? uLB 0.1°x 0.1° monthly Climatology
Termites Saunois, 2020 - annually Climatology
Ocean Weber, 2021 | 0.25°¢0.25° monthly Climatology
Geological Etiope, 2015 - annually Climatology
Fossil fuels EDGAR v6.0 0.1°x 0.1° monthly 2005-2018
Agriculture and waste EDGAR v6.0 0.1°x 0.1° monthly 2005-2018
Biofuels & biomass GFED-4.1s 0.25°x 0.25° monthly 2005-2020
burning

Covers Europe from 10.5°W to 33°E and 34.5°N to 73.5°N
*Covers Eurasia from 26°W to 55°E and 34°N to 78°N

resolution and in their original resolution, such that you can choose to use the resolution most
suitable for your system. If you want to make use of the original flux dataset, please make
sure that the total flux is conserved upon regridding. Note that fluxes for peatlands, mineral
soils and inland water (lakes) are only given for a limited domain. If groups want to include
fluxes for these categories outside the provided domain as well, they are free to use the fluxes
there that they deem appropriate.

Modelling groups are free to decide whether or not to explicitly model the atmospheric OH
sink (as its influence is expected to be very small over Europe). For groups that do wish to
include it, please use the OH field provided on our Research Drive. Modelling groups that
decide to submit an extra inversion (apart from the proposed experiments, see section 6.5),
which makes use of isotope data, we strongly advise to include the atmospheric OH sink.

6.2 Atmospheric observations

As part of the VERIFY experiment a harmonized set of atmospheric observations of CH, mixing
ratios was created. This set contains observations provided from the InGOS project (2005-
2016), from NOAA flask sampling sites in Europe (2005-2018), from AGAGE, and additional
data from European sites (ICOS, WDCGG and personal communications). The full site list is
available with the input data. The list contains a label for each site to indicate whether it may
be assimilated (thereby also distinguishing between a set of ‘core’ and ‘other’ observation
sites, see section 6.5) or must be kept for validation purpose.

We request groups to submit at least an inversion using daytime (12:00 to 16:00 local time)
surface observations only. As an additional submission, groups are free to use (satellite-
based) observations in addition to or instead of the provided observations dataset. In that
case, please clearly document the assimilated observations.
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For mountain site observations (indicated in the observation dataset overview), we ask to
only assimilate nighttime observations (0:00 to 6:00 local time), sampled at the real altitude.
If groups wish to submit an additional inversion that also assimilates daytime observations,
please use a sampling height in the middle between the model topography and the real
altitude.

6.3 Boundary conditions

For consistency in the regional contribution, we require modelling groups that perform a
regional inversion to use the CAMS v19rl reanalysis data as background/boundary
conditions. This data is based on assimilated surface observations only and can be
downloaded from the Copernlcus atmospheric data store:

|nver5|on?tab overview

For groups that have a system which makes use of the Rédenbeck 2-step inversion approach
[3], consistent baseline fluxes are available on our Research Drive.

6.4 Uncertainties

All assumed uncertainties and covariance structures must be documented well. To facilitate
a meaningful comparison, please adhere to the following:

e Use the observational uncertainties as provided with the observed value for the
surface observations. Note that some observations are reported without
uncertainties. Uncertainties to be used in those cases can be found in the header of
the particular file.

e On top of the observational uncertainty a model uncertainty should be included as
deemed appropriate by the modelling groups. Please document the choice made.

s Uncertainties for the prior anthropogenic and natural fluxes are free to be chosen by
the modelers, but should be in reasonable agreement with the current scientific
consensus. So please support your choice by appropriate references. Useful sources
may include Solazzo et al. 2021, Saunois et al. 2020, and Petrescu et al. 2020

6.5 Inversion experiments

We request modelling groups to submit inversion results for at least the baseline
configuration, and we highly encourage submission of additional results for the experiments
described below:

- Baseline (mandatory): assimilating the ‘core’ observations only, using each model's
best set-up, but adhering to the requirements outlined in sections 6.1 to 6.4 of this
protacol. Please submit results for as many years as possible within the range 2005-
2020, but including at least 2008, 2013 and 2018.

- Experiment 1: Similar to the baseline inversion, but assimilating the ‘other’
observations in addition to the ‘core’ observations.
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- Experiment 2: Similar to the baseline inversion, but doubling the relative uncertainty
of the anthropogenic prior fluxes compared to the natural fluxes,
- Extra: Any additional inversion results a group would like to submit. Please try to
change only one aspect at a time compared to the baseline set-up, for ease of analysis.
When submitting the results, please use the following designation to distinguish between the
different experiments: base, exp1, exp2, extra.

7. Output Data

To accommodate the analysis of the inversion results, all groups are asked to provide prior
and posterior values and uncertainties for different types of output: gridded fluxes, national
totals and simulated mole fractions. Please see the sections below for specifications of the
desired output.

7.1 Gridded fluxes and uncertainties

Please provide yearly NetCDF4 files with gridded methane fluxes on a 0.25x0.25 degrees
spatial grid and monthly resolution, containing:
e Dimensions:
o latitude [degrees North, center of gridbox, at least 35.125 to 69.875]
o longitude [degrees East, center of gridbox, at least -14.875 to 34.875]
o time [day of year]
e Variables [lon x lat x time, kg CHs m™? h', double precision):
o prior [prior fluxes]
error_prior [prior flux uncertainty]
post [optimized fluxes)
error_post [uncertainty of optimized fluxes]

o oo

Filename format: grid_[yyyy]_[exp]_[model].nc

7.2 National total emissions and uncertainties

In addition to the gridded fluxes we ask you to also provide estimates for the national land-
only (so excluding territorial waters) CHa emissions and their uncertainties. A country mask
(both a high resolution 0.01°x 0.01° mask and a corresponding fractional 0.25°x 0.25° mask
are provided) to be used for this aggregation can be downloaded from our Research Drive
(see section 10). Please distinguish between the following categories: (fossil fuel) energy use,
agriculture and waste, biofuel and biomass burning, wetlands, and other natural emissions. If
your set-up does not facilitate separate optimization of these categories you can aggregate
the optimized total fluxes according to the prior distribution.

Please provide yearly NetCDF4 files that contain monthly totals for:

e« Dimensions:
o country [name of country, as specified in the country mask]
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o month [month number]
* Variables [country x month, Gg CH,, double precision]:
o prior_[category]
o error_prior_[category]
o post_[category]
o error_post_[category]
with category denoting: total, energy, agriwaste, bioburning, wetlands, other

Filename format: country_[yyyy]_[exp]_[model].nc

7.3 Mixing ratios and uncertainties

Please provide both prior and optimized mixing ratios and the imposed uncertainty for all
assimilated observations. Include these results in the provided .csv files, or as a NetCDF4 file
with variables:
site, yyyy, mm, dd, hh, mi, ss, yobs, ybkg, ypri, ypos, yerr, (ybkgpos)

all having the number of observations as dimension. In the above, ‘site’ represents the 3-
character site identifier, ‘yobs’ the observed value, ‘ybkg’ the background mixing ratio (use ‘-
999’ if not applicable, i.e. for global models), ‘ypri’ and ‘ypos’ the prior and posterior mixing
ratios respectively, ‘yerr’ the model-data mismatch used for assimilation (i.e. sum of
observation and model uncertainty), and (if applicable) ‘ybkgpos’ the optimized background
mixing ratio. Report all mixing ratios in ppb.

Filename format: conc_[yyyy]_[exp]_[model].csv/nc

8. Validation

81 CH, mixing ratios

Some observations are denoted as ‘validation’ in the site list. Please provide simulated mixing
ratio’s corresponding to these observations (and matching the timestamps) for both the prior
and posterior fluxes, using the same format as specified above (use -999 for ‘yerr’).

Filename format: val_[yyyy]_[exp]_[model].csv/nc

8.2 Radon mixing ratios

To assess the impact of the performance of the different transport models on national
emission estimates we ask you to include radon (?2?Rn) as a tracer for atmospheric transport
in your baseline set-up. A climatological flux map of ?*2Rn is provided on our research drive,
as constructed by Karstens et al. 2015. Note that we regridded the fluxmap from its original
resolution of 0.087°x 0.087° to 0.25°x 0.25° thereby imposing average flux values per
ecosystem type for the cells within our domain that are outside the bounds of the original
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map. Please provide hourly simulated concentrations for the year 2018 for the sites indicated
in the observations site list, in NetCDF4 files:
* Variables:
o Time [samples x 6, as [year,month,day,hour,minute,second] for each sample]
o rn_model [samples, in Bg/m?)

Filename format: rn_[site]_[exp]_[model].nc

9. Documentation

All submissions should be accompanied by a document outlining the inversion set-up(s). This
document should include at least:

* Name and email of one contact person

« Name and identifier (used in the filenames) of your inversion system

* Details about the inversion framework:
o Definition of the state vector
o Correlation length
o Optimization method
o Treatment of background mole fractions (if applicable)

# Details about the transport model:
o Resolution
o Name, driving meteorological data, and other relevant settings
o Estimate for the transport model error as used in the inversion

# Overview of prior emissions and their uncertainties
o Source (if additional sources are used apart from those listed in section 6.1)

and resolution

o Assumed uncertainty and covariance

* Assimilated observations
o If you deviated from the provided list, please indicate how and why

Chi square statistics of the inversion
Overview of the performed experiments and simulated years.

Filename format: info_[model].txt

10. Logistics

The deadline for submission of results for phase 1 is March 1, 2022. We kindly ask potential
participants to declare their intention to participate in advance, by sending an email to
|.florentie@vu.nl. We encourage modeling groups to participate in both phases of the study,
however, this is not a strict requirement.

Input data can be downloaded from our Research Drive. You will be given access after
notifying us about your intention to participate.
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Your results can be submitted by uploading them to the same Research Drive. Please make
sure to keep the filename formats of submitted files as specified above, where [model]
represents and identifier for your inversion framework.

For questions and further information, please contact Liesbeth Florentie (l.florentie@vu.nl)
or Sander Houweling (s.houweling@vu.nl).
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