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1 Executive Summary 

This document reports on the work performed in Task 5.6 within the work package WP5 
‘Connecting scales and uncertainties’ of the CoCO2: Prototype system for a Copernicus CO2 
service project. The aim of Task 5.6 ‘Assessment of uncertainties in European inversion of 
CO2 and CH4’ is essentially to perform multi-model intercomparisons to quantify the 
uncertainty range in European CO2 and CH4 land-atmosphere fluxes from atmospheric 
inversions. The work in this task also includes preparing a roadmap on benchmark 
atmospheric transport model inversions. 

For CO2 an analysis of the impact of changing various components (foreground and 
background atmospheric transport model, prior uncertainty specification) in an atmospheric 
tracer transport inversion on posterior CO2 fluxes was performed. For this, we used two such 
inversion systems (CSR and LUMIA) over Europe for the year 2018. The objective is to identify 
the dominant driver of uncertainty in the posterior CO2 estimates.  Two Lagrangian transport 
models (STILT and FLEXPART) were used to assess the impact of foreground (regional) 
transport on posterior CO2 fluxes. Two Eulerian transport models (TM3 and TM5) were used 
to quantify the impact of the background (lateral boundary conditions) on posterior CO2 fluxes, 
and finally two different schemes to set spatio-temporal prior uncertainties as employed by 
LUMIA and CSR were used to quantify the impact on posterior CO2 fluxes. These variations 
lead to an ensemble of eight inversions. The results from this ensemble show a large spread 
in the annual terrestrial posterior fluxes over the whole domain of 0.92 PgC yr-1 ranging 
between −0.72 and 0.20 PgC yr−1, which is almost twice as large as the assumed prior 
uncertainty of 0.47 PgC yr-1.  The largest part of the spread in the results could be accounted 
for by the regional transport model component.  The global transport models used for providing 
background contribution were responsible for a smaller part of the spread but with a quasi-
constant offset, hence acting like a bias. The differences arising from using different inversion 
systems (i.e. prior uncertainty specifications) were the smallest. 

In the CH4 inversion intercomparison eight different atmospheric transport inversion systems 
have been used. The range in posterior fluxes obtained from the inversions is currently too 
large to provide a strong constraint on national emissions. The only countries for which the 
inversions deviate systematically from the prior are The Netherlands and Italy, where the 
inventory reports respectively lower and higher emissions than the inversions. In the case of 
the Netherlands this may include the region of intensive agriculture (extending into north-
western Germany ). Across most measurement sites the models perform quite well in 
capturing the timing of mixing ratio anomalies, an important requirement for emission 
estimation.  However, the signal of emissions in the mixing ratio time series is most evident in 
the amplitude of the observed variability. These amplitudes also vary between models, making 
the inversion-derived emission adjustments sensitive to transport model uncertainty. A logical 
next step would be to further investigate such uncertainties using simulations of 222Rn (which 
is also proposed in the roadmap as an essential part of the benchmarking system). So far, 
however, the number of participants who provided information on radon is unfortunately too 
low for such an assessment. 

The results obtained here from the intercomparisons emphasize the need for a robust 
evaluation of atmospheric transport inversion systems. Hence, a roadmap for setting up a 
community benchmarking system is presented. Since the posterior emissions estimates from 
atmospheric transport inversions cannot be directly validated, such a benchmarking system 
needs to include a) a range of different observations and b) the possibility of comparing results 
from different inversion systems to each other (i.e. a cross-comparison of inversion results).  
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2 Introduction 

2.1 Background 

To support EU countries in assessing their progress for reaching their targets agreed in the 
Paris Agreement, the European Commission is supporting the development of an 
anthropogenic CO2 emissions monitoring and verification capacity. Such a capacity would 
deliver consistent and reliable information to support policy- and decision-making processes.  

The CoCO2 Coordination and Support Action builds the prototype system for such a European 
monitoring and verification capacity. Is the continuation of an initiative to explore the 
development of a European system to monitor human activity related carbon dioxide (CO2) 
emissions across the world – the CO2 Human Emissions (CHE) project  

The main objective of CoCO2 is to perform R&D activities identified as a need in the CHE 
project and strongly recommended by the European Commission's CO2 monitoring Task 
Force. The activities shall sustain the development of a European capacity for monitoring 
anthropogenic CO2 emissions. The activities will address all components of the system with 
the aim to have prototype systems at the required spatial scales ready by the end of the project 
as input for the foreseen Copernicus CO2 service element.  

The overall objective of WP5 is to improve the representation of inversion uncertainties, which 
are important not only for the uncertainty of the generated flux estimates, but also to determine 
the weight that different elements of information that are used should receive. Also, recent 
atmospheric tracer transport inverse modelling intercomparison activities, such as the 
EUROCOM project, focusing on the regional European CO2 inversions, have shown that there 
is a broad range in the posterior estimates of the net European terrestrial CO2 fluxes (Monteil 
et al., 2020). 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of Task 5.6 is to investigate ways to evaluate posterior estimates and their 
uncertainties by means of model inter-comparisons both for CO2 and CH4 as well as the 
preparation of a roadmap for a dedicated benchmarking system for atmospheric inversions.  

2.2.2 Work performed in this deliverable 

The WP5 team has performed transport inversion experiments for CO2 and CH4 and 
coordinated the intercomparison of these inversion experiments. In addition, the task has 
prepared a roadmap for setting up a benchmarking system for atmospheric inversions and 
illustrating the benchmarking concept with some prototype results.  

The inversions systems participating in the intercomparison include:  

• LUMIA (ULUND, both CO2 and CH4) 
• CarboScope Regional (MPG, both CO2 and CH4) 
• WRF-STILT (NIM, CH4) 
• CIF-FLEXPART (NILU, CH4) 
• CIF-CHIMERE (LSCE, CH4) 
• NIES-FLEXPART (NIES, CH4) 
• TM5 CT-Europe (FMI, CH4) 
• ICONDA (EMPA, CH4)  
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The work on the CO2 transport inversion intercomparison has already been published in 
Munassar et al. (2023). Therefore, only a brief summary is given here in Section 3 of this 
deliverable report and the full paper is included as an appendix (Section 7). 

2.2.3 Deviations and counter measures 

No deviations were encountered. 

 

3 Assessment of uncertainties in European inversion of 
CO2 

3.1 Set-up of the intercomparison 

The work performed here is based on the outcome of the regional atmospheric CO2 transport 
inversion intercomparison project EUROCOM (Monteil et al., 2020). Within the EUROCOM 
project six state-of-the-art inversion systems provided posterior estimates of the net European 
terrestrial CO2 fluxes. The ensemble of regional inversions suggest that European ecosystems 
are a relatively small sink of −0.09 PgC yr−1 (ensemble mean posterior estimate of the 2006-
2015 average net flux), however with values from individual inversion systems ranging from a 
net source of 0.28 PgC yr−1 to a net sink of −0.41 PgC yr−1. Overall, the range of posterior 
estimates from the inversions (0.7 Pg C yr−1) is narrower than that of the priors (1.06 Pg C 
yr−1 compared to 0.7 PgC yr-1) but the convergence of the regional inversions at this scale is 
not better than that obtained in state-of-the-art global inversions. 

As part of the CoCO2 project we now calculated posterior fluxes from an ensemble based on 
two of the inversion systems that participated in EUROCOM to better quantify the sources of 
uncertainties in the posterior estimates. While in the EUROCOM project the intercomparison 
protocol was, on purpose, rather loose to explore the full range of reasonable posterior flux 
estimates, we defined a very strict protocol for the ensemble used here. In detail, we tested 
the impact of various components in the setup of regional atmospheric CO2 inversion systems 
through a set of inversions that differ only by the component in question in the atmospheric 
transport inversion system. The components we looked at are the atmospheric transport 
models used for calculating both the foreground and the background response, as well as the 
inversion system, i.e., the specification of prior uncertainties. For this, we performed an 
ensemble of eight inversions using the two regional atmospheric transport inversion systems 
LUMIA (Monteil and Scholze, 2021) and CarboScope-Regional (CSR; Kountouris et al., 2018; 
Munassar et al., 2022). The ensemble of inversions consists of the following configurations 
(also shown in Table 1): 

• In its default configuration, LUMIA relies on the FLEXPART Lagrangian particle 
dispersion model to compute CO2 transport within Europe (foreground), with lateral 
boundary conditions taken from a TM5-4DVAR simulation. These boundary conditions 
are provided in the form of time series of “background” concentrations (i.e., far-field 
contributions), computed directly at the observation sites by the TM5 model, using the 
2-step inversion scheme of Rödenbeck et al. (2009). The temporal shape of the prior 
terrestrial flux uncertainty is determined as a weekly uncertainty from the standard 
deviation of NEE. For the spatial domain, a Gaussian function of the spatial correlation 
decay is applied to the prior uncertainty structure with a spatial length scale of 500 km. 
These values are then scaled such that the prior flux uncertainty over the full domain 
of Europe is 0.47 PgC yr−1. That corresponds to experiment LF5 in Table 1. 

• CSR, by default uses the STILT Lagrangian particle dispersion model to compute the 
foreground with the background provided by TM3 from the global CarboScope 
following also the 2-step scheme. In CSR the same total European prior flux 
uncertainty of 0.47 PgC yr−1 is used, however, this uncertainty is uniformly distributed 
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spatially and temporally over the domain using a hyperbolic function with correlation 
length scales chosen to be 66.4 km spatially and 30 d temporally, respectively. That 
corresponds to experiment CS3 in Table 1. 

• In addition, LUMIA inversions were performed using the Lagrangian transport model 
STILT, as an alternative to FLEXPART, and using background concentrations from 
global (TM3-based) CarboScope inversions, as an alternative to TM5-4DVAR.  And 
vice versa, CSR inversions were performed using FLEXPART to compute the 
foreground and using background concentrations from a TM5-4DVAR simulation.  

• One additional experiment (not listed in Table 1) was performed with LUMIA using 
entirely the same specification as in CSR (STILT foreground, TM3 background and flat 
hyperbolic prior uncertainties) and compared against the default CSR set-up (CS3) to 
ensure that there were no other differences affecting the inversion results. 

 

Table 1: List of the inversion setups for the CO2 intercomparison with the two inversion 
systems LUMIA and CSR 

Experiment Inversion 
System 

Transport model  Prior uncertainty 

Foreground Background Shape Decay 

LF5 LUMIA FLEXPART TM5 Variable Gaussian 

LF3 LUMIA FLEXPART TM3 Variable Gaussian 

LS5 LUMIA STILT TM5 Variable Gaussian 

LS3 LUMIA STILT TM3 Variable Gaussian 

CS3 CSR STILT TM3 Flat Hyperbolic 

CS5 CSR STILT TM5 Flat Hyperbolic 

CF3 CSR FLEXPART TM3 Flat Hyperbolic 

CF5 CSR FLEXPART TM5 Flat Hyperbolic 

 

All simulations were done for the year 2018 using the same VPRM (Mahadevan et al., 2008) 
NEE prior terrestrial fluxes, optimized at a weekly resolution on a 0.25° grid, and using 
continuous observations from 45 tall-tower sites in Europe. Anthropogenic emissions are 
taken from the EDGAR v4.3 inventory (for the purpose of this comparison studies this version 
of EDGAR is fully sufficient) and are updated to recent years according to statistics from the 
energy company BP of fossil fuel consumption, and they are distributed spatially and 
temporally based on fuel type, category, and country-specific emissions, using the COFFEE 
approach (Steinbach et al., 2011). The emissions are remapped to a 0.25° spatial grid and to 
an hourly temporal resolution. Ocean fluxes are taken from Fletcher et al. (2007), who provide 
climatological fluxes at a spatial resolution of 5°×4°, remapped to 0.25° to be compatible with 
the biosphere model fluxes.  

 

3.2 Results CO2 fluxes  

We first analyzed the impact of the various component changes in the inversion systems on 
the annual estimates of the posterior terrestrial biosphere flux over the whole domain. The 
spread among posterior estimates is relatively large, ranging between −0.72 and 0.20 PgC 
yr−1 (Figure 1b) with an average of −0.29 PgC yr-1 among the ensemble for the annual 
estimates. This range is larger than the assumed prior uncertainty of the terrestrial biosphere 
flux of 0.47 PgC yr−1. This value for the prior uncertainty on the annual European terrestrial 
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flux has been derived from the global uncertainty (2.80 PgC) assumed in the CarboScope 
global inversion for the annual biogenic fluxes (Rödenbeck et al., 2003) On a monthly basis, 
the mean standard deviation of monthly posterior estimates over the ensemble of inversions 
is 0.72 PgC yr-1. The largest deviations occur between inversions that differ by the foreground, 
i.e., regional transport models (e.g., CS3 versus CF3 or LS5 versus LF5). Also, the seasonal 
amplitude was found to be different between the STILT and FLEXPART inversions. The 
STILT-based inversions led to a larger amplitude of posterior NEE than the FLEXPART-based 
inversions (Figure 1a). 

 

 
 
Figure 1: Panel (a) refers to posterior monthly NEE estimated using eight inversions, including 

prior NEE shown in black, with CSR (solid lines) and LUMIA (dashed lines), and panels (b) 
denotes the corresponding annually aggregated fluxes. Orange and red colours correspond to 
TM3, and dark or light blue correspond to TM5. Orange and light blue colours refer to STILT, 

and red and dark blue refer to FLEXPART. 

When looking at domain wide averages the largest differences in posterior flux estimates result 
from the models used for calculating the foreground response (the regional transport models 
STILT and FLEXPART). The differences in monthly estimates of NEE calculated with CS3 
and CF3 inversion setups that vary in regional transport models are shown in Figure 2 
(“transport”). The differences caused by transport have a clear seasonal pattern: differences 
between CS3 and CF3 peak in November and June, reaching 2.11 and −1.82 PgC yr−1, 
respectively. The best agreement between both inversions is obtained during the transitional 
months (August and April) with differences of −0.10 and −0.18 PgC yr−1, respectively. 

 

 
Figure 2: Differences in optimized fluxes calculated with the regional transport models STILT 

and FLEXPART (“transport”; CS3-CF3) and background provided through TM3 and TM5 
(“background”; CS3-CS5). “system” refers to the differences between CSR and LUMIA 

inversion for optimized fluxes (CS5-LS5). 
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The second largest differences in posterior flux estimates result from the background, i.e., 
which model was used for calculating the lateral boundary conditions. The impact of using 
different background fields was analysed by assessing the differences in the posterior NEE 
estimated with CS3 and CS5 inversions, which use boundary conditions from the global 
inversions CarboScope and TM5-4DVAR, respectively. Figure 2 (“background”) shows that 
this impact has rather the form of a bias (almost consistent differences over time) when 
aggregated over the entire domain of Europe: differences in the monthly posterior fluxes 
between CS3 and CS5 inversions amount to a range of 0.11 to 0.64 PgC yr−1 with the smallest 
differences occurring in the winter months. Larger flux corrections are modelled when using 
background fields from TM5 (CS5) than from TM3 (CS3). 

The smallest differences in posterior flux estimates result from using different systems, here 
we compare CS5 and LS5 (Figure 2; “system”). The monthly differences between CS5 and 
LS5 range between 0.06 and 0.56 PgC yr−1, the differences peak during May, June, and 
November, while the differences remained rather small during the rest of the year. Generally, 
LF5 predicts larger CO2 releases compared to CS5. 

 

 
 

Figure 3: Panels (a)–(c) show the spatial distributions of annual NEE estimated with the base 
inversions CS3 and LF5, as well as their prior. Panels (d) and (e) depict the innovations of 

fluxes calculated for the inversions CS3 and LF5. Green circles denote the locations of 
observational sites. 

In terms of spatial distributions, the base cases of CSR and LUMIA inversions, i.e., CS3 and 
LF5 (default configurations of both systems), exhibit a reasonable agreement in the annual 
terrestrial source/sink distribution over Europe (Figure 3). Major corrections compared to the 
prior fluxes are obtained over western and southern Europe suggesting an overestimation of 
the CO2 uptake by the prior biogenic fluxes. The exceptionally dry summer in 2018 in Europe 
(Bastos et al., 2020) turned some areas in central, northern, and western Europe into a net 
source of CO2. The discrepancies between CS3 and LF3 noticed in the innovations (that is 
the difference between posterior and prior), e.g., in northern France, the Netherlands, and 
south-eastern UK, are attributable to the combination of differences in regional transport 
models, lateral boundaries, and system configurations. 
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Figure 4: Panels (a)–(c) indicate differences in annual posterior NEE estimated with STILT and 

FLEXPART models, referred to as “transport” (CS3-CF3); TM3 and TM5 are referred to as 
“background” (CS3-CS5); and CSR and LUMIA are referred to as “system” (CF3-LF3). 

In terms of the spatial differences in annual flux estimates, using STILT generally leads to 
predicting larger sources of CO2 in the regional inversions, in particular over central Europe 
and the UK compared to using FLEXPART (Figure 4, “diff: transport”). In turn, inversions using 
FLEXPART suggest less uptake over northern Italy, Switzerland, and south-eastern France. 
However, this impact refers to a spatial pattern of transport differences that might be caused 
either by meteorological data or by problematic sites that transport models have difficulty 
representing.  

The distributions of spatial differences in posterior fluxes caused by using different background 
fields indicate a homogeneous impact across the full domain of Europe (Figure 4, “diff: 
background”). These findings confirm the results obtained in Figure 2 (“background”) for the 
temporal domain. This impact is consistent in space and time, with coherent deviation over all 
months, and is therefore not expected to affect the seasonal and interannual variability.  

The spatial differences shown in Figure 4 “diff: system” alternate between positive and 
negative differences over the domain (but these tend to compensate when aggregating the 
flux estimates over the full domain). It should be noted that the inversion systems mainly differ 
in the definition of the shape and structure of the prior uncertainty. Therefore, applying different 
structure and magnitude of prior flux uncertainty in the inversions may inflate the error in CO2 
flux estimates over the underlying regions in the domain, in particular if the spatial differences 
do not cancel out. The spatial results indicate that the impact of inversion systems should not 
be neglected, especially at national and subnational scales. 

 

3.3 Concluding remarks  

In this section, we have presented an analysis of the impact of changing various components 
(foreground and background atmospheric transport model, and prior uncertainty specification 
as referred to as inversion system) in atmospheric tracer transport inversion systems on 
estimating net terrestrial CO2 fluxes using two such systems (CSR and LUMIA) over Europe 
in 2018. The main focus here is to quantify the dominant drivers of uncertainties in the posterior 
CO2 estimates derived from atmospheric tracer inversions. Two Lagrangian transport models 
(STILT and FLEXPART) were used to assess the impact of foreground (regional) transport on 
posterior CO2 fluxes. Two Eulerian transport models (TM3 and TM5) were used to quantify 
the impact of the background (lateral boundary conditions) on posterior CO2 fluxes, and finally 
two different schemes to set spatio-temporal prior uncertainties as employed by LUMIA and 
CSR were used to quantify the impact on posterior CO2 fluxes. These variations lead to an 
ensemble of eight inversions. The results from this ensemble show a large spread in the 
annual terrestrial posterior fluxes over the whole domain of 0.92 PgC yr-1 ranging between 
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−0.72 and 0.20 PgC yr−1, which is almost twice as large as the assumed prior uncertainty of 
0.47 PgC yr-1.  

The choice of the regional transport model accounts for the largest part of the differences in 
the posterior fluxes. Temporal and spatial differences in posterior fluxes demonstrate a spatial 
pattern over certain areas during June and December, suggesting rather systematic 
differences between STILT and FLEXPART. The differences in the regional transport are 
mainly caused by the transport schemes (meteorological forcing data only partially contribute 
to these differences, not shown here). In addition, the global transport models used in the 
global inversions that provide the far-field contributions to the regional domain are responsible 
for small but non-negligible differences in the inversion estimates. These differences appeared 
to be homogeneous spatially and temporally, and hence can be considered as a bias. The 
differences arising from using different inversion systems integrated over the entire domain of 
Europe were in contrast rather small in comparison. However, such an impact is a result of 
applying different structure and shape in the prior flux uncertainty reflecting the importance of 
the way the uncertainty is prescribed in the tracer inversion systems. 

The results obtained here emphasize the need for further evaluation of atmospheric transport 
models in order to improve the performance of the models and hence the inversion systems. 
A first aspect on this is to perform an intercomparison of regional atmospheric transport 
inversions for CH4, which is believed to be more robust since there are mainly emission 
sources and no large sink terms for CH4 as opposed to the net CO2 flux which is the difference 
between two large gross fluxes. This topic is further discussed in the next section (Section 4) 
of this report. Ultimately, what is needed to reduce uncertainties and quantify the fidelity of 
inversion systems is an objective benchmarking system. A roadmap for setting up such a 
system is presented in Section 5 of this report.  

 

 

4 Assessment of uncertainties in European inversion of 
CH4 

4.1 Introduction and background 

The CH4 inversion intercomparison builds on initial efforts in the H2020 project VERIFY to 
collect prior fluxes and surface measurements over Europe for use in the regional inversion 
systems developed in the project. We made use of WMO-IG3IS/Transcom meetings to discuss 
an international intercomparison with the inverse modelling community based on the protocol 
developed in VERIFY. This gave other groups within and outside of Europe the opportunity to 
join the intercomparison, increasing the number of inverse models to 8. Support from COCO2 
and WMO-IG3IS was used to coordinate the experiment, update the protocol, make the input 
data package available to potential participants, collect submissions on a server, analyze the 
results, organize meetings with the participants to discuss the outcomes, and present the 
status of the experiment at international meetings.  

The aim of the experiment is to investigate the use of the inverse modelling technique to 
support the national emission reporting to the UNFCCC by improving the consistency between 
the national emission inventories and atmospheric measurements. The case of CH4 emissions 
over Europe was chosen, because of the good availability of measurements from the ICOS 
regional network and the relatively large uncertainty of anthropogenic CH4 emissions 
(compared with CO2), which atmospheric measurements may help reduce. The experiment 
focused on emissions trends starting in the year 2008, when the INGOS project started 
delivering data to ICOS, until 2018. 

A second, equally important, aim of the intercomparison experiment is to develop 
benchmarking methods to evaluate and compare the performance of inverse modelling 
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systems and monitor their development in time. For this purpose, the protocol made an 
evaluation dataset available of the coordinates and sampling times of independent 
measurements that were not used in the inversions, for example because of incomplete 
measurement time series (making them less suitable for use in the inversion).  

This section describes the experimental protocol (Section 4.2) and presents and discusses 
the results that were collected (Sections 4.3 and 4.4). The results section includes 
comparisons of inverse models and surface measurements that are used Section 5 to discuss 
a future benchmarking system. 

 

4.2 Protocol and submissions 

Participants are requested to optimize surface fluxes of methane using their inverse modelling 
systems for the European domain, covering at least the area of 15oW- 35oE and 35oN – 70oN. 
Inversion results should cover as many years as possible in the time range of 2005-2018. If 
continuous coverage of all those years is too computationally expensive then at least the years 
2008, 2013, and 2018 are requested to be able to compare fluxes from as many inverse 
models as possible, including their trends. The requested output is in the form of gridded 
surface fluxes and country integrals for at least EU27 + UK.  

The inverse modelers are requested to make use of a common set of prior fluxes, 
measurements, and regional domain boundary conditions (for regional models) in their 
inversion setups. However, it was decided not to prescribe prior or data uncertainties. For the 
surface fluxes, this is because the different resolutions of the models requires a regridding of 
emissions that would make the prior uncertainties at the model grid ambiguous without 
detailed information about spatiotemporal correlation of uncertainties, which inventories do 
not provide. For the measurements, estimates of measurement uncertainties were provided 
and requested to be used, however, the model / data representation error components of the 
data uncertainty are model dependent and were therefore not prescribed. Because of these 
rules, the intercomparison focuses primarily on impacts of transport model differences and 
differences in the optimization method and setup. 

 

Table 2: Prior methane emissions used in the CH4 inversion intercomparison. 

 

Prior fluxes are made available as monthly gridded flux fields at 0.25ox0.25o resolution. 
Alternatively, fluxes are also provided at their native resolution (see Table 1), for inversions 
that can benefit from the higher resolution information offered by those datasets. Modelers are 
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free to represent the OH sink of methane in their European inversion, for which an OH field 
has been made available.    

The VERIFY project delivered a harmonized set of CH4 measurements. This set contains 
observations from 66 surface sites from the InGOS project (2005- 2016), NOAA flask sampling 
sites in Europe (2005-2018), AGAGE, and additional data from European sites (ICOS, 
WDCGG and personal communications). The station list classifies sites as ‘core’ (39), ‘other’ 
(22), and ‘validation’ (5) (see Figure 5). Participants are asked to perform separate inversion 
using measurements from ‘core’ (39) sites and ‘core + other’ (61) sites. ‘core’ sites are those 
that deliver the most complete datasets throughout the whole inversion time window. The ‘core 
+ other’ are used in an inversion that will be referred to as ‘Exp 1’.   

Participants who use regional models are requested to use a common set of initial and lateral 
boundary conditions from the CAMS v19r1 reanalysis, based on a global inversion using 
surface measurements at background sites. For groups that make use of the Rödenbeck 
method (Rödenbeck et al, 2009) consistent baseline concentrations have been made 
available.  

All groups are asked to perform inversions using the ‘core’ and ‘core+other’ measurement 
datasets. To evaluate the transport model performance participants are asked to perform a 
forward run of 222Rn, for which a climatological flux field has been made available based on 
Karstens et al  (2015). After a first evaluation of results, discussed with the participating 
groups, it was decided to allow for one round of updated inversion for those who want to 
improve methodological issues that came up in the analysis and discussions. 

 

 

Figure 5: Map of CH4 sites used in inversions and for validation 

Since submissions are on a voluntary basis, some groups were only able to submit results 
that were incomplete on, for example, the validation dataset, posterior CH4 mixing ratios. Or 
222Rn abundances. Such submissions could still be used to assess methane fluxes, but not for 
performance evaluation and benchmarking. Table 3 provides an overview of participants, 
models, and the information that has been submitted. CIF-Chimere and CIF-Flexpart were 
performed within VERIFY, which explains why the validation dataset that was requested in the 
COCO2/IG3IS protocol and country integrals (using the country masks we provided) are not 
available. For these submissions country totals were reconstructed from the gridded fluxes. 
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For CarboScope an updated submission, which should make the missing mixing ratio output 
available, did not come in time for this report. 

 

4.3 Results 

First, we examine spatial patterns of surface flux adjustments from the gridded surface flux 
fields that were provided by all participants. The prior fluxes show a good agreement between 
the models, confirming a successful implementation of the protocol regarding these fluxes. 
Figure 6 compares annual mean differences between posterior and prior fluxes for the year 
2013. The geometry of the observation network (Figure 5) suggests that the surface fluxes of 
Germany and the BeNeLux are resolved relatively well by the inversions. According to Figure 
6, the flux adjustments for these countries are reasonably consistent between the inversion 
systems with emission increases over The Netherland and Northern Germany. In the 
remainder of Germany the flux adjustments are smaller and more ambiguous between the 
inversions at the southern border. This pattern is the least clear in the global NIES inversion, 
which shows smaller emission adjustments than other models and systematically lower across 
the European domain. Nevertheless, The Netherlands is among the few regions where upward 
flux adjustments are made in NIES. 

 

Table 3: Participants and available datasets. 

 

 

Italy shows emission adjustments that are downward on average, but the size of this emission 
reduction seems less well constrained by the data. Some inversions, such as CIF-Flexpart 
(‘NILU’) and Lumia show strong local emission adjustments in the north of Italy, which could 
point to difficulties representing the measurements at Mt. Cimone in these models. The most 
notable disagreement between the inversion optimized fluxes is for Ireland, where emissions 
are either increased (CSR), decreased (CIF-Flexpart, Iconda), or not adjusted much (the other 
inversions). This points most likely to the influence of the western lateral domain boundary 
condition that is used, with Ireland being the first country (for the predominantly westerly 
winds) where emission can be adjusted to improve the agreement with the most western 
measurement sites in the network. Similar disagreements are found for Spain, which is not 
well detected by the network. Emission adjustments in Eastern Europe are less prominent 
than in the west, which could be explained by the western European centre of weight of the 
ICOS network in combination with a predominantly westerly flow.                     
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Despite some minor differences between different years (see Figure 8) the general pattern in 
Figure 6 is remarkably robust in time. Even different months of the year show a similar pattern 
as the annual mean. 

 

Figure 6: Annual mean surface flux adjustments (posterior – prior) for the year 2013 in kg/m2/h 

The mean emission over 2006 – 2018 from the prior inventory is for most countries within the 
range of posterior flux estimates, suggesting that the inventory is consistent with atmospheric 
data within the uncertainty of the flux inversions. Exceptions are the aforementioned countries 
Italy and the Netherlands, and to a lesser extend also Hungary. As can be seen in Figure 7, 
estimates for The Netherlands and Hungary are significantly and systematically higher than 
the inventory, with the exception in both cases of the NIES model.  Conversely, for Italy the 
inversion estimates are systematically lower than the inventory, again except for the NIES 
model. As discussed earlier the flux adjustments of the NIES inversion are smaller and 
smoother than for the other inversions. However, for some countries NIES does deviate 
significantly from the prior in a way that is not very different from the other models. Therefore, 
the NIES inversion cannot simply be disregarded as an outlier.              
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Figure 7: Comparison of posterior and prior CH4 emission for selected countries. 

To assess emission trends, it is useful to subtract the mean as shown in Figure 8. For this 
figure, countries have been chosen with relatively large methane emissions in the region that 
is expected to be best sampled by the ICOS network considering the network geometry and 
the importance of the west to east component of the wind. For the UK, Poland, and France 
the trend of the emission inventory is within the range of trends from the inversions. In the 
case of Italy (not shown), this range in trend and year-to-year variability is quite large among 
the different inversions and can therefore not be estimated robustly. For The Netherlands and 
Germany the inversions show a relatively consistent emission pattern with a decrease 
between 2006 and 2011, turning into an increase since then. The inventory estimates for these 
countries shows a steady decline in emissions. For Hungary the inversions show a trend that 
is on average somewhat larger than estimated by the inventory. However, the range is again 
large, with NILU’s CIF-Flexpart showing the largest deviation from inventory, contrasted by 
FMI’s CT-Europe being in reasonably agreement with the prior. 

 

Figure 8: Comparison of posterior and prior CH4 emission anomalies for selected countries.  

Finally, to assess the performance of the inversions and the atmospheric transport models 
that are used, we have compared the prior and posterior fits to the observations. Figure 9 
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shows a few examples of such comparisons along a west to east transect from Biscarosse 
(France), Ochsenkopf (Germany), and Hegyhatsal (Hungary) for the year 2013. At Biscarosse, 
near the Atlantic coast of France, all inversions are quite well capable of capturing the 
observed variability already in the prior model setup. Notice that the night time measurements, 
which are not used in the inversions except for mountain sites, are left out of this comparison. 
Biscarosse is a core station in the protocol, meaning that these data have been used in the 
core inversion and are therefore not an independent evaluation of the inversions.  

The emission adjustments in the run with posterior fluxes change the amplitudes rather than 
the phasing of the simulated variability. This may be expected as the short-term variability is 
largely dictated by the synoptic weather conditions, rather than the emissions. However, the 
amplitude of variability is also sensitive to the transport model that is used. For example, 
mixing ratios in July are underestimated by Lumia, but well simulated by CIF-Chimere (LSCE) 
and Iconda with the same prior fluxes. In December, Iconda overestimates the observations, 
while CIF-Chimere and Lumia are at the observed level. The peak in the beginning of March 
is either underestimated (CIF-Chimere) or overestimated (Iconda). These transport model 
differences are known to be sensitive to vertical mixing and the simulated height of the 
planetary boundary layer, which is critical for the emissions that are estimated by the 
inversions. As expected the posterior fits to the measurements are closer than the prior, 
although mismatches remain visible in these plots.  

The picture at Biscarosse is not very different further inland as shown for the comparison at 
Ochsenkopf. Here the observed time series show more measurement gaps complicating the 
comparison. Nevertheless, a systematic overestimation using the prior fluxes is visible 
towards the end of the year in CIF-Flexpart (NILU), Lumia, and NIM. This is not reproduced 
by Iconda and CIF-Chimere, however, raising again the question of the role of transport model 
uncertainty. At Hegyhatsal, strong enhancements in methane are observed in the winter, again 
with strong difference in their representation by the Iconda and CIF-Chimere in this case. The 
inconsistency in the model – observation mismatches might well explain the large range of 
posterior emission adjustments discussed earlier. 
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Figure 9: Modelled and measured CH4 time series at selected sites comparing a priori and a 
posteriori model fits to the measurements. 

Figure 10 summarizes the prior and posterior fits of the inversions to the measurements that 
are optimized in the inversion, showing the RMS error at each station for each model. The 
results for CT-Europe show RMS errors that are almost a factor two higher than the other 
models. The measured and modeled time series show systematic offsets (not shown) pointing 
to a remaining problem with the inversion that the authors have been contacted about. The 
other models show overlapping circles and crosses indicating similar fits of ‘core’ end ‘exp1’ 
inversions to the measurements. The inversions have difficulty fitting the site in Ispra (which 
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has a complicated flow pattern that is difficult to represent in the models), the mountain site 
Mt Cimone, and the high latitude site Zeppelin, which show very high RMS errors compared 
to other sites. The Lumia inversion system shows the lowest RMS of all models at many sites, 
starting from prior fits to the stations that are not much different from the other inversions. 

 

Figure 10: RMS error of the fit between CH4 inversions and measurements at each optimized 
measurement site. 

To facilitate the comparison of prior and posterior RMS errors between models we averaged 
them over all sites (see Figure 11) except Izana (IZO) and Zeppelin (ZEP) (both sites are not 
inside the model domain of most of the regional models). The latter two were disregarded 
because of large residual errors (see Figure 10), most likely explained by their large distances 
from the European emissions that are optimized. Lumia has the lowest posterior RMS errors, 
followed by NIES and Iconda, which have the lowest prior RMS errors. CIF-Flexpart (NILU) 
and Lumia show the strongest error reductions between prior and posterior.         

 

Figure 11: As Figure 9 averaged over all measurement sites. 
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4.4 Concluding Remarks 

The inversion results for methane presented in this section highlight the challenge of 
estimating national greenhouse gases emission using a regional monitoring network, which is 
the case not only for carbon dioxide but also for methane. The models used in the 
intercomparison are quite well capable of capturing the timing of mixing ratio anomalies, an 
important requirement for emission estimation which is satisfied. However, the signal of 
emissions that is most evident in the mixing ratio time series is the amplitude of the observed 
variability, which is sensitive to transport model uncertainty. A logical next step would be to 
further investigate such uncertainties using simulations of 222Rn. So far, however, the number 
of participants who provided information on radon is unfortunately too low for such an 
assessment. 

The range in posterior fluxes obtained from the inversions is currently too large to provide a 
strong constraint on national emissions. The inventory estimates of mean emissions and 
emission trends are mostly within the range of the inversion results. So, it can be concluded 
that they are consistent with the atmospheric information. However, the limited constraint of 
the inversions on the inventory fluxes is more due to the quality of the inversions than intrinsic 
limitations in the information on fluxes provided by the measurements. Therefore, there is 
scope left to strengthen the observational constraint on the fluxes by improving the quality of 
the inversions. The only countries for which the CH4 inversions deviate systematically from 
the prior are The Netherlands and Italy, where the inventory under- and overestimates the 
emission according to the inversions. In the case of The Netherlands, as well as for north-
western Germany, this may include regions of intensive agriculture. Further research is 
needed to investigate if these differences can really be attributed to inventory uncertainties. 

 

5 Roadmap for benchmarking atmospheric inversion 
systems 

5.1 Conceptual framework 

Following the results presented in the previous two sections showing large ranges in posterior 
fluxes among the various inverse modelling systems it is rather obvious that an objective and 
robust evaluation/benchmarking system will be instrumental for reducing the large spread in 
posterior estimates of either CO2 or CH4 emissions from regional atmospheric inversions. This 
also follows the fact that the inverse problem is usually underdetermined, because 
observational networks are sparse in coverage and hence resolving fluxes (spatially and 
temporally) at  scales relevant for scientific or policy interest is not possible without prior 
information. In addition, the problem is ill-conditioned because diffusion in atmospheric 
transport can render rather small variations or errors in observed or modelled atmospheric 
concentrations to relatively large changes or errors in the posterior flux estimates.  Hence, it 
is paramount to objectively evaluate the results of such inverse problems. Robust 
evaluation/benchmarking systems have already been used in the past for other modelling 
systems such as numerical weather prediction models (e.g. Rodwell et al., 2010, or also here 
‘ECMWF: Quality of Our Forecasts, http://www.ecmwf.int/en/forecasts/quality-our-forecasts 
(last access: 17 September 2023). More recently, such developments have also taken place 
for e.g., terrestrial biosphere models such as the International Land Model Benchmarking 
system (ILAMB; Collier et al., 2018) or also the CoCO2 modelevaluation.org instance (as part 
of the CoCO2 project and described in deliverable report D5.2 ‘Report on error assessment 
data base and toolbox for simulated terrestrial CO2 fluxes’) that provides a toolbox to assess 
errors of simulated terrestrial CO2 fluxes (Nelson and Walther, 2022). For the evaluation of 
atmospheric inversions it is useful to distinguish between the quality and the skill of an 
inversion system. The former refers to whether an inversion system provides correct results 
(‘it got it right’) whereas the latter refers to the reasons for providing correct results (‘why did it 
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get it right’). Here we describe a way forward for establishing a community benchmarking 
system for atmospheric greenhouse gas inverse modelling systems with a focus on assessing 
the quality of the system.  

 

Main components of a community benchmarking system  

Because direct observation of the major long-lived greenhouse gas (GhG, here CO2 and CH4) 
fluxes at the relevant spatiotemporal scales for evaluating posterior emission estimates from 
inversions are rarely available, any evaluation/benchmarking system must rely on indirect 
measures. The roadmap for a community benchmarking system laid out here consists of two 
main components: First, a diagnostic performance check of an individual inverse modelling 
system against a range of independent information as well as statistical diagnostics of 
inversion results. And second, a platform for comparison of inversion results from an individual 
inverse modelling system against results from ideally an ensemble of different inverse 
modelling systems. This should be seen as collaborative work among atmospheric CO2 
modelers to assess atmospheric GhG inversion models and help individual groups to study 
the performance of their system against an ensemble of systems. This ensemble should be 
based on a set of well-defined ‘base inversions’, such that any potential user can upload their 
(recent version of) inversion results and compare these against the ensemble. 

A comprehensive assessment of available methods for diagnosing the quality of inverse 
modelling results for long-lived greenhouse gases for individual inverse modelling systems 
has been published by Michalak et al. (2017). They mainly distinguish between assessment 
against independent information, statistical diagnostics of inversion results, sensitivity tests 
and analysis of robustness, and synthetic data experiments as diagnostic methods. The first 
three are highly relevant here: the assessment against independent information and the 
statistical diagnostics are most important for individual systems, whereas the analysis of 
robustness can also be done as part of an ensemble described below. 

As mentioned before the direct evaluation against independent information from surface fluxes 
is usually not possible because of the differences in scales. But posterior flux estimates can 
be evaluated against unused atmospheric observations, which are withheld from the inversion. 
These observations are additional data from in situ station measurements, aircraft profiles, 
ground-based remote sensing (such as the Total Carbon Column Observing Network, 
TCCON), or satellite remote sensing. A more detailed description of the various datasets is 
given in section 5.2. The evaluation is performed by an additional ‘forward’ transport simulation 
of the posterior fluxes translating the flux estimates into corresponding atmospheric 
concentrations (either at the ground-based measurement station, an atmospheric profile or 
the total atmospheric column). Such comparisons against various independent atmospheric 
observations provide information on whether the posterior flux estimates are consistent with 
the main constraints provided by the atmosphere, i.e. seasonal cycle, latitudinal gradients, or 
regional patterns of concentrations (e.g., Jiang et al., 2014; Díaz Isaac et al., 2014; Pandey et 
al., 2016; Liu and Bowman, 2016; Kountouris et al., 2018; Bergamaschi et al., 2018; Crowell 
et al., 2019). Typical metrics to compare against these time series data are bias and standard 
deviation. 

Another way of benchmarking posterior flux estimates is the evaluation at larger scales based 
on independent information. This type of evaluation typically involves comparisons of the 
inversion-derived estimates against flux magnitudes at larger (e.g. continental to larger 
countries) scales assessing the direction and magnitude of the net flux in such a region (i.e., 
source versus sink, e.g. Berchet et al., 2013), flux seasonality (e.g. Houweling et al., 2014), or 
spatial and temporal gradients (e.g. Cressort et al., 2014). For assessing the direction and 
magnitude of the net flux, independent estimates based on either remotely sensed vegetation 
data (such as NDVI or FAPAR) or upscaling of direct measurements (such as the FLUXCOM 
product) can be used, however, these products carry their own uncertainties such that a 
quantitative evaluation is difficult. On continental scales and in regions with dense direct (eddy 
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covariance) flux measurement networks (such as Europe) the posterior flux estimates from an 
inversion can be compared directly against average quantities of the direct measurements. 
For example, Broquet et al. (2013) compared the temporal (monthly) evolution of European-
wide flux estimates against the average flux (flux aggregates) calculated from continuous, 
quality controlled eddy covariance measurements from a large set of sites that are spread 
over the main regions and ecosystems of Europe. The data availability is discussed in Section 
5.2. Relevant metrics for the direct comparisons are the amplitude of the seasonal cycle and 
the root mean square errors in the monthly/daily fluxes. 

As outlined in Section 3 above model transport errors are the main contributors to the 
uncertainty in the posterior flux estimates. The best way to obtain an estimate of these errors, 
and benchmark atmospheric tracer transport models, is by assessing the transport model 
quality in a controlled tracer release experiment. However, such experiments are limited in 
their scale and therefore the estimated errors are not specific for certain locations and 
meteorological conditions. An alternative is a forward transport model simulation for a tracer, 
for which the fluxes are widespread and both fluxes and concentrations are relatively well 
known. Examples for this are the simulations of 222Radon (222Rn; Karstens et al., 2015) or SF6 
(Krol et al., 2018), however, for both tracers the emissions fields are not known well enough 
to provide robust estimates of the large scale transport errors. Another way to benchmark 
transport models is to analyse the quality of the vertical mixing. This can be done by comparing 
the simulated depth of the mixing layer against derived mixing heights from radiosonde 
measurements (Gerbig et al., 2008). Typical metrics for the evaluation are here again bias 
and standard deviation against the observations at measurement sites. 

Another strategy for evaluating inversion results is based on assessing whether the prior and 
posterior flux estimates, their uncertainties and covariances are consistent with the 
assumptions that went into the setup inverse modelling system. This strategy then rather 
focuses on evaluating the statistical self-consistency of the inversion framework. This helps to 
identify errors and misconceptions in the setup that eventually can lead to unreliable results. 
A standard statistical diagnostic for inversions (assuming Gaussian, unbiased errors) is to test 
whether the sum of squared posterior errors follows a chi-squared distribution with a known 
number of degrees of freedom (e.g. Desroziers et al., 2005; Cressot et al., 2014). Such a chi-
square test should be included in the benchmarking system to verify the self-consistency of a 
given inversion system.   

The second component of the proposed community benchmarking system is a platform for 
comparing posterior emissions from an individual inverse modelling system against results 
from an ensemble of inverse modelling systems (including a group of different transport 
models and inversion methods) to understand the impact of transport model error and 
inversion method on estimated fluxes. An example for such a platform is the OCO-2 v10 MIP 
available at https://gml.noaa.gov/ccgg/OCO2_v10mip/ (last accessed 17 September 2023). In 
order to facilitate the comparison of posterior results and to be able to track the reasons for 
differences in the posterior flux estimates from the various inverse modelling system a strict 
pre-formulated experiment protocol for performing a ‘base inversion’ experiment including a 
well-defined common format for the submitted results is required. The details of a proposed 
protocol are given below. In short, the protocol needs to provide a list 
of mandatory measurement stations to be used in the inversions as well as prescribe prior flux 
fields to be used and any other flux components not to be optimised in the inversions (such 
as e.g., emissions from fossil fuel burning in the case of CO2). Both CO2 and CH4 are included 
as inverted tracers in the community benchmarking system. Additional tracers, such as 
222Radon should also be included for evaluating the quality of the transport model component 
of the inverse modelling systems. In addition, the community benchmarking system needs to 
include advanced and easy-to-use collaborative visualization tools to facilitate the uptake of 
the comparison/benchmarking platform by the community.  

The community benchmarking system should be hosted centrally at one place that can provide 
both storage space to store the data as well as collaborative tools to analyse and visualise the 

https://gml.noaa.gov/ccgg/OCO2_v10mip/
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data. The ICOS Carbon Portal facilities can provide both these aspects by making available 
storage space through their data servers, and even more importantly, by running a jupyter hub 
(https://jupyter.icos-cp.eu/) that can be accessed by the community and can host jupyter 
notebooks allowing collaborative analysis and visualisation of the submitted data.  

Any submissions from individual inverse modelling groups to the benchmarking platform 
should include both posterior emission estimates and their uncertainties. Ideally, the 
uncertainties are provided on the same spatio-temporal resolution as the emission estimates. 
However, if an individual inverse modelling group cannot include posterior uncertainty 
estimates at the same resolution as the posterior emission estimates then, at least, 
aggregated uncertainty estimates on national and annual scale should be submitted.  

The spatial focus of the community benchmarking system should be on a data rich region such 

as Europe as defined in the EUROCOM project (15 W–35 E by 33 N–73 N). But 
submission from global inverse modelling systems that include the European region in a 

sufficiently high spatial resolution (~1 by 1 in a regular longitude/latitude grid) should be 
allowed as well.  

A key requirement for the benchmarking system is transparency. That means any group 
wanting to participate and submit results to the community benchmarking platform needs also 
to provide all the necessary meta data. This includes a full description of the components of 
their inversion system (i.e. transport model, inversion methodology as well as set-up of the 
system beyond any specifications given in the comparison/benchmarking protocol). In 
particular, the model setup needs to be described providing details on how the background 
contribution is treated in regional systems and how the prior uncertainty is specified. 

To increase the numbers of participants anonymous initial submissions should be allowed and 
new users should be encouraged to upload their results themselves and test if their files 
comply with the requested format and fall within the results of the ensemble. Also, the public 
visualisation of the results from the comparison can be done such that individual inversion 
systems are anonymised.  

A set of basic diagnostics needs to be performed with the ensemble of submissions. Among 
them are the ensemble mean (weighted evenly by model submissions, but at a later stage this 
can be complemented by a weighting according to specific model performance from individual 
benchmarks against independent data as described above), ensemble spread and standard 
deviation across the ensemble on top of the individual results.  
 

Protocol 

The starting point for a common protocol for the community comparison/benchmarking system 
is the protocol for the CH4 inverse modelling intercomparison described in Section 4. This 
protocol is provided in Appendix 8 as an example, which can also be used and revised 
accordingly for CO2. 

Potential submissions should focus on a few selected years to also allow the analysis of 
emission trends. The base year can be 2018 because this year has already been intensively 
studied (e.g. Monteil et al., 2020; Thompson et al., 2020; Munassar et al., 2023) and is also 
included in the CH4 intercomparison from Section 4. As mentioned before, any submission 
needs to also include uncertainty estimates on the posterior emissions. An important aspect 
that simplifies the collaborative analysis (by e.g. jupyter notebooks) of submitted results 
tremendously is to comply to a given output format as specified in the protocol. 

The exact specifications in the protocol depend also on the initial participants and what they 
can provide and what they would like to see, but the protocol needs to include information on 
(see Appendix 8 for details): 

• Spatial and temporal domain definition 

• Prior fluxes to be used 
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• Emission fields for any flux components not to be optimised by the inversions (e.g. 
anthropogenic emissions for CO2) 

• Atmospheric observations to be assimilated for which concentrations need to be 
submitted 

• Atmospheric observations withheld for validation but for which concentrations need to 
be submitted 

• Boundary conditions to be used by regional inversion systems (either as lateral fluxes 
or as background fields) 

• Uncertainties on both observations and prior fluxes 

• 222Rn emissions fields to be transported 

• Specification of the output data 
o Gridded fluxes and uncertainties 
o Mixing rations (also for 222Rn) and uncertainties 

• Required documentation and meta data 
o Contact person  
o Version of the inversion system  
o Details about the inversion framework:  

▪ Definition of the state vector 
▪ Correlation length 
▪ Optimization method 
▪ Treatment of background  

o Details about the transport model 
▪ Resolution  
▪ Meteorological input data, and other relevant settings  
▪ Estimate of the transport model error as used in the inversion  

o Prior emissions and their uncertainties  
▪ Prior flux fields to compare priors as used in the model to priors 

specified in the protocol 
▪ Source (if other sources are used than given in the protocol and 

resolution)  
▪ Assumed uncertainty and covariance  

o Assimilated observations  
▪ Deviations from list in the protocol need to be explained  

o Chi square statistics of the inversion  
o Overview of the performed experiments and simulated years.  

 

5.2 Required datasets 

Table 4 provides an overview on the required datasets, their intended use and their availability. 
More information on observational datasets is provided in the deliverable reports from Work 
Package 7, in particular the gap analysis report D7.6 (Parampil et al., 2023). 

 

Table 4: Datasets for the benchmarking system 

Dataset Usage Source 

Atmospheric in-
situ observations 
(CO2 and CH4) 

Assimilation and 
withheld 

observations for 
validation 

ICOS Carbon Portal: 

https://www.icos-cp.eu/data-products/atmosphere-
release 

European ObsPack: 

https://www.icos-cp.eu/data-products/PEKQ-M4T1 
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https://www.icos-cp.eu/data-products/9CQ4-W69K 

Satellite total 
column 
observations 
(CO2 and CH4) 

Assimilation and 
withheld 

observations for 
validation 

OCO2 CO2: 
https://disc.gsfc.nasa.gov/datasets?keywords=oco-

2&page=1 

Sentinel 5P CH4: 

https://sentinels.copernicus.eu/web/sentinel/data-
products/-

/asset_publisher/fp37fc19FN8F/content/tropomi-
level-2-methane 

Aircraft Profiles Validation 

North America: 

https://gml.noaa.gov/ccgg/aircraft/ 

CONTRAIL: 

https://cger.nies.go.jp/contrail/download/index.html 

IAGOS: 

https://iagos.aeris-data.fr 

Aircore Profiles 
(CO2 and CH4) 

Validation 
Europe: 

https://aircore.aeris-data.fr/ 

Ground-based 
column 
observations 

Validation 

TCCON: 

https://tccondata.org 

COCCON: 

https://www.imk-asf.kit.edu/english/3884.php 

 

222Rn emission 
map  

atmospheric 
222Rn 
observations 

Validation 

ICOS Carbon Portal: 

https://doi.org/10.18160/2ST9-3NAD 

atm. 222Rn  available soon at selected ICOS 
stations 

Radiosonde 
mixing heights 

Climatological 
mixing heights 

Validation 

Integrated Global Radiosonde Archive: 

https://www.ncei.noaa.gov/products/weather-
balloon/integrated-global-radiosonde-archive 

Climatological mixing heights: 

Provided as a supplement to Seidel et al., 2012, 

https://doi.org/10.1029/2012JD018143 

Direct eddy 
covariance (EC) 
flux observations 

Validation 

ICOS Carbon Portal: 

https://www.icos-cp.eu/data-products/ecosystem-
release 

Flux map from 
upscaled EC 
observations 
(FLUXCOM) 

Validation https://www.fluxcom.org/CF-Download/ 

 

https://disc.gsfc.nasa.gov/datasets?keywords=oco-2&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=oco-2&page=1
https://gml.noaa.gov/ccgg/aircraft/
https://tccondata.org/
https://www.imk-asf.kit.edu/english/3884.php
https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
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5.3 Demonstration from test cases 

An evaluation of CH4 inversions at validation sites is shown in Figure 12. This is taken from 
the CH4 inversion intercomparison described in Section 4 where the participating modelling 
system are known. Except for some site-to-site variations, the results are fairly systematic 
across the sites of the validation dataset. The ranking of models by RMS-error is consistent 
with the prior and posterior fits to inverted measurement sites (as discussed earlier in Section 
4.3), except NIES performing less well than Lumia and Iconda at validation sites compared to 
inversion optimized sites. Because of the low number of validation sites it is difficult to judge if 
this is caused by the independence of the validation data or by the poorer spatial 
representation of the validation dataset. 

 

Figure 12: Comparison of RMS errors of CH4 inversions at validation sites. 

Averages of RMS errors across all validation sites (see Figure 13) highlight the differences 
between the inversions discussed above. As expected, the difference between prior and 
posterior models is less for the validation dataset than for the inverted dataset. For NIES the 
performance gain at validation sites as fraction of the prior RMS error is somewhat larger than 
for the other models. Because of the limited number of validation sites, however, it is difficult 
to judge how robust these averaged differences are. The optimization process improves the 
correlation between model and measurements at all validation sites, most notably for models 
that do not score so well using prior fluxes. The model bias improves for all models also. As 
seen in the timeseries already, the high RMS of FMI is largely explained by a bias, that does 
not improve much from prior to posterior. We are in contact with the data providers to check 
this outcome.        

The validation would benefit from more sites, however, at the cost of the measurements  
available for emission estimation. A solution may be to perform more inversions, each 
reserving different sites for validation. This would of course make the inversions more 
computationally expensive, which has a trade-off with the resolution or the number of iterations 
or ensemble members that can be used in a single inversion. 
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Figure 13: Comparison of the performance of CH4 inversions at validation sites, comparing RMS 
(top), correlation (middle) and bias (bottom).  

 

5.4 Concluding Remarks 

The roadmap for benchmarking atmospheric inversion systems describes a community based 
benchmarking system based on two pillars: a) benchmarking individual inversion results 
against a range of different observations and b) comparing results from different inversion 
systems to each other (i.e. a cross-comparison of inversion results). 

The first pillar constitutes a ‘traditional’ benchmarking system in which the results (posterior 
GhG fluxes) of an inversion system should ideally be compared against independent 
observations of GhG fluxes. This direct benchmarking against flux observations based on 
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eddy-covariance measurements is usually not possible because of the scale differences 
between the gridcell-based inversion estimates and point scale measurements. But the 
posterior flux estimates can be assessed against unused atmospheric observations, which are 
withheld from the inversion, however, such an evaluation against concentration data is not 
conclusive for evaluating the quality of an inversion system as the example test case in Section 
5.3 shows. 

The second pillar is based on a platform for comparison of inversion results from an individual 
inverse modelling system against results from an ensemble of different inverse modelling 
systems. Here, the idea is not to establish an intercomparison project but rather to provide a 
platform where the results of an individual inversion system can be assessed against the 
ensemble results and help individual groups to study the performance of their system against 
an ensemble of systems. This ensemble should be based on a set of well-defined ‘base 
inversions’, such that any potential user can upload their (recent version of) inversion results 
and compare these against the ensemble.  For both pillars various performance metrics (such 
as bias, standard deviations, root mean square errors, amplitude of the seasonal cycle) are 
suggested. 
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7 Appendix: Munassar et al., 2023, publications 
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8 Appendix: CH4 inverse modelling intercomparison 
protocol 
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