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1 Introduction 

1.1 Background 

To support EU countries in assessing their progress for reaching their targets agreed in the 
Paris Agreement, the European Commission has clearly stated that a way to monitor 
anthropogenic CO2 emissions is needed. Such a capacity would deliver consistent and reliable 
information to support policy- and decision-making processes. 

To maintain Europe’s independence in this domain, it is imperative that the EU establishes an 
observation-based operational anthropogenic CO2 emissions Monitoring and Verification 
Support (MVS) capacity as part of its Copernicus programme. 

The CoCO2 Coordination and Support Action is intended as a continuation of the CO2 Human 
Emissions (CHE) project, led by ECMWF. In the Work Programme, ECMWF is identified as 
the predefined beneficiary tasked to further develop the prototype system for the foreseen 
MVS capacity together with partners principally based on the CHE consortium.  

The main objective of CoCO2 is to perform R&D activities identified as a need in the CHE 
project and strongly recommended by the European Commission's CO2 monitoring Task 
Force. The activities shall sustain the development of a European capacity for monitoring 
anthropogenic CO2 emissions. The activities will address all components of the system, such 
as atmospheric transport models, re-analysis, data assimilation techniques, bottom-up 
estimation, in-situ networks and ancillary measurements needed to address the attribution of 
CO2 emissions. The aim is to have prototype systems at the required spatial scales ready by 
the end of the project as input for the foreseen Copernicus CO2 service element.  

The specific objective of CoCO2 WP5 is to address the role of scales and uncertainty in the 
MVS. 

 

1.2 Scope of this deliverable 

1.2.1 Objectives of this deliverable 

The main purpose of Task 5.5 is to assess impact of design options on posterior uncertainty 
representation.  

1.2.2 Work performed in this deliverable 

The task has performed data assimilation sensitivity studies and (computationally more 
efficient) Quantitative Network Desigen (QND) experiments to investigate - where possible in 
a 'light' and flexible Data Assimilation (DA) system - the impact of different design aspects of 
the inverse modelling / data assimilation approach on accuracy of the fossil fuel emissions 
(both best estimate and its uncertainty range).  

The DA systems applied in this task span scales from global to regional to local and include  

• the global CCFFDAS,  

• the local CCFFDAS set up around Berlin,  

• Carbon Tracker Europe-CH4 (CTE-CH4), 

• The LSCE's Western Europe analytical inversion system, and 

• the inverse modelling system LOTOS-EUROS.  
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1.2.3 Deviations and counter measures 

No deviations were encountered. 
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2 CCFFDAS 

2.1 System Description 

The Carbon Cycle Fossil Fuel Data Assimilation System (CCFFDAS, Kaminski et al., 2022) 
pursues an innovative approach to the estimation of fossil fuel emissions in that it combines 
top-down (inverse modelling) and bottom-up (forward modelling) of sectoral fossil fuel 
emissions and of the terrestrial biosphere. 

With respect to the user requirements identified by CoCO21, the CCFFDAS addresses by 
construction the user requirement of disentangling fossil fuel CO2 emissions and natural flux. 
Further, it is worth noting that the system can be operated in two modes. The synergistic mode 
includes (IEA or other) sectoral national emission totals as an observation used in the model 
parameter calibration. Alternatively, CCFFDAS can be operated in verification mode, i.e., 
without using sectoral national emission totals (typically take from the IEA data base). This 
latter mode provides emission estimates that are largely independent of data used for the 
bottom-up estimations of emission, and thus address another user requirement. 

 
 
Figure 1. Modelling framework with forward flow of information in CCFFDAS. Boxes represent 
calculation steps by models, blue ovals observables, and the yellow oval the control vector 
(model parameters and initial condition) 

The (global) CCFFDAS consists of a series of numerical, process-based models simulating 
the global atmospheric transport of CO2

 (Heimann and Koerner, 2003), the sectoral emissions 
from fossil fuel usage and the exchange fluxes (photosynthetic uptake and respiratory release) 
from the terrestrial biosphere (Kaminski et al., 2017). The flow of information in the forward 

 

1 https://www.coco2-project.eu/sites/default/files/2022-03/CoCO2-D6-3-V1-0.pdf   

https://www.coco2-project.eu/sites/default/files/2022-03/CoCO2-D6-3-V1-0.pdf
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sense through the modelling chain is shown in Figure 1. The CCFFDAS version used here 
separates fossil fuel emissions into two sectors, an electricity generation sector and the 
complement, which is termed other sector (see Asefi-Najafabadi et al., 2014; Kaminski et al., 
2022). The electricity generation is simulated per power plant using a prior emission data set 
per power plant. Emissions from the other sector are simulated by the Kaya identity 
(Nakicenovic, 2004): the emissions F from the other sector in a 0.1 degree times 0.1 degree 
gridcell x in country c are given by    

     F(x,c)=pP(x)g(x)ef(c). 

The variables on the right-hand side are a scalar multiplier, p, for the population density, P(x), 
a point-wise estimate of the per capita gross domestic product, g(x), a global constant for the 
energy intensity of the economy, e, and a country-wise estimate for the carbon intensity of 
energy production, f(c). The output of these models, i.e. the CO2 fossil fuel emissions (from 
both the electricity generation and the other sector) and the CO2 land-atmosphere exchange 
fluxes, depend on a set of model parameters in the equations (the control vector) used for 
calculating the fluxes. In the Kaya identity these are denoted by lower case letters and for the 
electricity generation sector these are the emissions from each listed power station directly. 
The control vector components for the terrestrial ecosystem model are biome specific 
parameters controling the photosynthesis and heterotrophic respiration.  

For the data sets assimilated into the fossil fuel emission component we refer to Asefi-
Najafabady et al. (2014). The terrestrial biosphere component is driven by a data set of 
Fraction of Absorbed Photosynthetically Active Radiation by plants derived by the Joint 
Research Centre-Two-stream Inversion Package from satellites (Pinty et al., 2011) and by 
meteorological data from the fifth generation of ECMWF atmospheric reanalyses of the global 
climate (Hersbach et al., 2020).   

The CCFFDAS operates in two steps: 

1. Calibration against observations: The system is used to calibrate these parameters by 

assimilating the observational data streams. This calibration is based on a Bayesian 

formalism and uses a variational approach, i.e. a cost function consisting of two terms 

is minimised iteratively. The first term quantifies the misfit of simulated counterparts to 

the observational data streams and the second term the deviation to prior estimates of 

the parameter vector. The minimisation algorithm relies on code for evaluation of the 

gradient of the cost function with respect to the parameters. This gradient is provided 

efficiently by the adjoint of the modelling chain. This adjoint is derived by the automatic 

differentiation tool TAPENADE (Hascoët and Pascual, 2003).   

   

2. Target Simulation: The calibrated model is used to simulate relevant target quantities, 

i.e. sectoral fossil and biofuel emission fields on a 0.1 degree global grid that are 

consistent with the observations and the modelling chain. 

The estimated sectoral emissions on the 0.1 degree grid resolution can then be aggregated 
to various territorial units such as national or regional totals. For further details on this global-
scale CCFFDAS we refer to Kaminski et al. (2022). 

The assessments performed in this study apply the Quantitative Network Design (QND) 
approach, which is presented in detail by Kaminski and Rayner (2017), see also Tarantola 
(2005) and Rayner et al. (2019). In brief, it performs a rigorous uncertainty propagation from 
the observations to a target quantity of interest relying on the indirect link from the observations 
to the target variables established by a numerical model. The link has to be indirect, because, 
in general there is no direct link from the observations to the target quantity. There are, 
however, direct links from the control vector, which includes the uncertain inputs to the 

https://www.zotero.org/google-docs/?hMnM6Y
https://www.zotero.org/google-docs/?wJjulT
https://www.zotero.org/google-docs/?wJjulT
https://www.zotero.org/google-docs/?Fn1HqP
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modelling chain, to target quantities and observations (the two steps of operator described 
above). 

 

Figure 2: The flow of information in the forward sense through the modelling chain of the local 
CCFFDAS. Boxes represent calculation steps by models, blue ovals observables, and the 
orange and green ovals the control vector (model parameters). 

For some of the experiments conducted here, we used a local setup of the CCFFDAS. As the 
system is described in the published literature we focus our description on the aspects that 
are particularly relevant for this study and refer for more detail to Kaminski et al. (2022b). 

The local CCFFDAS is built around a modelling chain to simulate two CO2M XCO2 satellite 
images over the Berlin area, one on 3 February 2008 and one on 3 July 2008, starting 24 h 
before the respective acquisitions. The flow of information in the forward sense is shown in 
Figure 2. As in the global CCFFDAS, the CO2M observation impact is assessed through the 
QND approach, which is based on a representation of the modelling chain through a Jacobian 
matrix that quantifies the sensitivity of the measurements as a function of the control vector. 
Our control vector consists of the surface emissions into each grid cell and the lateral inflow 
of CO2 as well as scaling factors of the NO2/CO2 emission ratio. Our 24 h simulation period is 
sufficiently long to ensure that the initial concentration has left our 200 × 200 km2 domain 
under typical wind conditions, i.e., we can safely ignore it in the control vector. 
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Figure 3: Model domain including the locations of the largest emitting power plants. 

To link the emission models to XCO2 and NO2 observations by CO2M we use version 5.2.1 
of the Community Multiscale Air Quality model (US EPA Office of Research and Development, 
2018), which can be run as an offline tracer transport model with meteorological input fields 
derived from the Weather and Research Forecast model (WRF, version 3.9.1.1, (Skamarock 
et al. 2008). Our model domain of 200 km by 200 km around Berlin is shown in Figure 3. Over 
this domain we operate the model at a horizontal resolution of 2 km by 2 km with 32 vertical 
layers. 

For the time scales addressed in the present study, CO2 is considered chemically inert. By 
contrast, the loss of NO2 due to chemical processes needs to be taken into account. The 
model achieves this through an atmospheric lifetime. For the summer case we use a lifetime 
of 4 h and for the winter case we regard also NO2 as inert. 

 

Table 1: Fuel type, annual CO2 emissions, and NO2/XCO2 emission ratio for the 10 power plants 
in the domain with highest CO2 emissions. 

https://www.zotero.org/google-docs/?Iwv2yP
https://www.zotero.org/google-docs/?Iwv2yP
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For the electricity generation sector we take the locations of power plants, temporal emission 
profiles, as well as annual emissions of CO2 and NOx from a data set (Super et al. 2020)  
compiled as part of the European commission's CHE project (Balsamo et al. 2021). Table 1 
shows the relevant characteristics of the 10 largest power plants in the domain with highest 
CO2 emissions. The control vector for the electricity generation sector consists of the CO2 
emission of each power plant and of a scaling factor for the NO2 to CO2 emission ratio, which 
also absorbs uncertainties in the NO2 to NOx ratio. Prior uncertainties of the CO2 emission are 
assumed to be a constant fraction of 20% of the emission. With regard to the degree of 
differentiation of the scaling factor of the NO2/XCO2 emission ratio we explore three cases: 

• Uniform: All plants in our domain share the same scaling factor. 

• Per type: All plants in our domain of the same fuel type share the same scaling factor. 
  

• Per plant: Each plant in our domain has an individual scaling factor. 
 

 

Table 2: 1 sigma uncertainty range in the NO2 to CO2 emission ratio for each fuel type. 

The prior value for the scaling factor is 1. The (relative) prior uncertainty of the emission factor 
ratio is calculated from reported emission factor uncertainties averaged for several countries, 
following the approach used by (Super et al. 2020), see Table 2. 

Our “other” sector accounts for fossil fuel emissions from all sectors except electricity 
generation. Other sector emissions of CO2 and NOx are also taken from the data set by (Super 
et al. 2020). As the "other" sector includes several processes, the resulting emission ratio 
varies spatially depending on the contributions of different processes. The control vector for 
the other sector consists of the CO2 emission into each model grid cell and of a scaling factor 
for the NO2 to CO2 emission ratio. In our experiments, we use a (spatially uncorrelated) prior 
uncertainty of 52.8% of the emissions into a grid cell for each grid cell, which translates to a 
20% prior uncertainty when aggregated over Berlin. For the scaling factor of the NO2/CO2 
emission ratio we use a prior of 1 and the prior uncertainty for the average over fuel types. 

The terrestrial biosphere model we used to calculate the natural terrestrial CO2 exchange 
fluxes is based on the Simple Diagnostic Biosphere Model (SDBM, Knorr et Heimann, 1995), 
which was used by Kaminski et al. (2012) for assimilation of CO2 and by (T. Kaminski et al. 
2017) for assimilation of XCO2. Here we use a new implementation (Kaminski et al. 2022b)  
on the 2 km by 2 km grid of the transport model with a time step of 1 hour. It calculates the 
uptake of CO2 by photosynthesis (expressed as Gross Primary Productivity, GPP) using a 
light-use efficiency approach and ecosystem respiration using a temperature dependency. 
The control vector consists of 5 parameters that were calibrated against a set of eddy-
covariance sites. We use a prior uncertainty range of 20% for each of the parameters. 

For our experiments with the local CCFFDAS, the control vector is composed of the fossil fuel 
emissions from power plants, the fossil fuel emissions from the other sector, the inflow from 
the boundary, scaling factors for the NO2/CO2 emission ratio, and the parameters of the 
terrestrial biosphere model. 

The target quantities are fossil fuel emissions for each power plant and from the other sector 
on the 2 × 2 km2 pixel scale and aggregated to larger scales, including the scale of Berlin 
districts and of the entire city. The observational impact on the target quantities is quantified 
by the above-described two-step procedure: The first step uses the observational information 

https://www.zotero.org/google-docs/?AiqLN0
https://www.zotero.org/google-docs/?KK79zP
https://www.zotero.org/google-docs/?2zHJpk
https://www.zotero.org/google-docs/?MEQvLo
https://www.zotero.org/google-docs/?MEQvLo
https://www.zotero.org/google-docs/?COBf8P
https://www.zotero.org/google-docs/?COBf8P
https://www.zotero.org/google-docs/?COBf8P
https://www.zotero.org/google-docs/?jFwRkv
https://www.zotero.org/google-docs/?jFwRkv
https://www.zotero.org/google-docs/?jFwRkv
https://www.zotero.org/google-docs/?jFwRkv
https://www.zotero.org/google-docs/?m3cJ04
https://www.zotero.org/google-docs/?m3cJ04
https://www.zotero.org/google-docs/?oWpuBm
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to reduce the uncertainty in the control vector, i.e., from a prior to a posterior state of 
information. The second step propagates the posterior uncertainty forward to the simulated 
target quantity. 

Each CO2M satellite has a repeat cycle of 11 days. We apply our QND framework around the 
CCFFDAS to the simulated uncertainty in single measurement retrievals of CO2M for two 
specific overpasses with low cloud cover over our study domain around Berlin, one in winter 
and one in summer. Random and systematic errors were estimated from an error 
parameterisation formula that exploits the availability of aerosol information from a multi-
angular polarimeter (MAP) onboard each CO2M satellite. We computed the variance of the 
XCO2 observational uncertainty as the sum of the variances of random and systematic errors. 
This reflects the assumption that systematic and random errors are independent of each other 
and also in space. 

For the retrieval uncertainty in tropospheric column NO2 we follow the estimates of Lorente et 
al., 2019 for the TROPOMI NO2 retrieval. For the random uncertainty we use their estimate 
of the slant column error for the TROPOMI retrieval, which is 0.5–0.6 · 1015 molec cm-2. We 
use a systematic error of 0.3 · 1015 molec cm-2. We regard random and systematic error as 
independent and compute the variance of the NO2 observational uncertainty as the sum of the 
variances of random and systematic errors. We will also investigate the sensitivity of the 
posterior uncertainties with respect to the uncertainty in NO2. 

The inflow from the lateral boundary is represented in the control vector by one component for 
each group of 5 grid cells in the horizontal at each of the vertical levels with prior uncertainty 
of 0.53 g(C)/day. 

 

2.2 Analyses and Conclusions 

Following a request by the CO2M mission task force, we applied the global CCFFDAS in a 
study that assessed for an exemplary week in June posterior uncertainties in sectoral fossil 
fuel emissions at country scale for five selected countries (see Figure 4) expressing the 
constraints from several observational scenarios ranging from small in situ networks providing 
continuous CO2 measurements to synthetic observations from constellations of one to four 
CO2M satellites.  

The study reveals that each additional satellite in the constellation achieves a further reduction 
in posterior uncertainty of country scale sectoral fossil fuel emissions. As the electricity 
generation sector is relatively well-constrained by prior information, at country scale the main 
impact of atmospheric (X)CO2 observations was on the posterior uncertainties of the fossil fuel 
emissions from the other sector. For example, extending the constellation from one to four 
satellites reduces the posterior uncertainty of fossil fuel emissions from China’s other sector 
from ~180 MtC/yr to 124 MtC/yr, i.e. by roughly 30%. The added value of an extra satellite 
varies depending on the country and the local conditions (e.g., cloud cover) during the study 
week. For three out of the five countries the third satellites brings the largest added value in 
terms of reduction in posterior uncertainty. For Germany, adding the second satellite reduces 
the posterior uncertainty of the other sector by ~2%, while adding the third satellite to the 
constellation reduces the posterior uncertainty of the other sector by another ~16%. The study 
also explored whether a two-satellite CO2M constellation with increased swath width (350 km 
instead of 250 km) and reduced precision (0.9 ppm instead of 0.7 ppm) could achieve a 
performance similar to the three-satellite configuration with 250 km swatch and 0.7 ppm 
precision. This was not the case: Even though the two-satellite CO2M constellation with 
increased swath width (350 km instead of 250 km) and reduced precision (0.9 ppm instead of 
0.7 ppm) has marginally better performance than the nominal 2 satellite configuration (i.e. 
better spatial coverage overcompensates slightly for the performance loss through lower 
precision) it is still much inferior to the three satellite configuration. Even in comparison with 

https://www.zotero.org/google-docs/?SIDfiF
https://www.zotero.org/google-docs/?SIDfiF
https://www.zotero.org/google-docs/?SIDfiF
https://www.zotero.org/google-docs/?SIDfiF
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the case of a single satellite, the performance of in situ networks of varying sizes is much 
weaker (Kaminski et al., 2022). 

 

 

Figure 4: Estimated uncertainty in annual emission rates in MtC/yr for Australia, Brazil, China, 
Germany and Poland, and for various assumed CO2M constellations providing observations 
over land only (nadir view). Main focus should be on results from 2 satellites (red) versus 3 
satellites (light green) with a 250 km swath width. 

 

 

Table 3: Initial set of experiments with local CCFFDAS. 

A further series of seven experiments applied the local CCFFDAS, and is listed in Table 3. 
Experiments 1-3 and 4 assimilate XCO2 only, while experiments 4-6 add complementary NO2 
observations. The latter explore the three above-defined cases with regard to the degree of 
differentiation of the scaling factor of the NO2/XCO2 emission ratio. Experiments 1 and 3-7 
assume XCO2 retrievals benefit form complementary aerosol observations provided by the 
MAP, while Experiment 3 excludes that information. Experiment 2 relies on an alternative 
hypothetical XCO2 product (Buchwitz et al., 2013). Each of the seven experiments was 



CoCO2 2023  
 

D5.5 Impact of System Design on Emission Estimates 
 14 

conducted for a day in winter and a day in summer. For further detail we refer to Kaminski et 
al. (2022). 

 

Figure 5: Uncertainty reduction for ten largest power plants and all experiments in winter (left) 
and summer (right). 

 

Figure 6: Uncertainty reduction for the other sector at spatial scales from entire domain to grid 
cell and all experiments in winter (left) and summer (right). 

In Experiment 1, a large uncertainty reduction (≈60%–90%) is found for the three largest power 
plants and a moderate uncertainty reduction (up to 10%–20%) for the next largest (Figure 5). 
The uncertainty reduction is higher in the summer case, when both random and systematic 
errors are lower. The plant in Schkopau is a special case as it is covered by clouds in both 
periods. Due to its location on the western boundary in combination with easterly winds in the 
winter case its plume is not observed over our domain in that period. 

Next, we present uncertainty reductions for the other sector on the scales of the 2 km by 2 km 
grid cells, aggregated over Berlin districts, over the entire city, over some other towns in the 
domain, and over the entire domain (Figure 6). As for the power plants, the uncertainty 
reduction is considerably larger in the summer case. While the uncertainty reduction is low (up 
to 4% in the winter case and 8% in the summer case) at the grid cell scale and focuses on 
grid cells with higher emissions, it increases for emissions accumulated to the Berlin district 
scale (up to about 10% in the winter case and 20% in the summer case) and is higher for 
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districts with higher emissions (not shown). At the scale of Berlin we see a sizeable uncertainty 
reduction (about 28% in the winter case and 47% in the summer case). 

Experiment 4 adds NO2 measurements to the default setup (experiment 1). The extra NO2 
measurements increase the uncertainty reduction for the large power plants (Figure 5) in the 
summer and winter cases. In relative terms the increase in uncertainty reduction is particularly 
high for the plants which were not well observed with XCO2 alone and those with high 
NO2/CO2 emission ratio. 

The absolute reduction in posterior uncertainty through the addition of the NO2 measurements 
is, however, highest for the larger power plants. In relative terms the increase in uncertainty 
reduction is higher in the winter case, when the constraint by XCO2 alone is weaker. The best 
overall performance of XCO2 and NO2 is, however, achieved in the summer case, when both 
random and systematic errors are lower. Likewise for the other sector, the extra NO2 
measurements increase the uncertainty reduction on all scales in the summer and winter 
cases. On the grid cell scale uncertainty reductions reach now 25% in the winter case and 
40% in the summer case. High values reflect the combination of high emission ratio with high 
CO2 emissions. On the Berlin district scale the relative increase in uncertainty reduction is 
particularly high for districts that were not well constrained by XCO2 alone such as Spandau. 
In absolute terms the posterior uncertainty decreases most for districts with larger emissions 
such as Charlottenburg-Wilmersdorf. With the extra NO2 measurements the uncertainty 
reduction in the other sector emissions aggregated over Berlin increases to about 50% in the 
winter case and 60% in the summer case. The best overall performance of XCO2 and NO2 for 
the other sector is achieved in the summer case. 

Figure 5 shows the uncertainty reduction for the 10 largest power plants and all experiments 
of the winter (left) and the summer (right) periods. The default experiment performs better than 
the experiment 2 for all power plants, reflecting the lower random and systematic errors of the 
default case. The MAP improves the impact of the CO2M measurements for all power plants 
and in the summer and winter cases. Over our study domain, the impact of the MAP is 
particularly high in the winter case. Even with reduced prior uncertainty there is strong 
uncertainty reduction for large power plants, in particular in the winter case, when XCO2 alone 
leaves more scope for improvement and the atmospheric NO2 lifetime is longer. The 
differentiation of the scaling factors in the NO2/CO2 emission ratio has an impact on the 
uncertainty reduction. As expected, a uniform scaling factor yields higher uncertainty reduction 
than a scaling factor per plant. This is because the uniform scaling factor is constrained by the 
atmospheric observations of all plants (transfer of information between plants), while an 
independent plant-specific scaling factor is only constrained by the atmospheric observations 
of the plant in question. In other words, the case of the uniform scaling factor imposes more 
prior knowledge as it removes the independence of the scaling factors. In between these two 
cases lies the case with a scaling factor per fuel type, with the exception of the largest of the 
ten power plants where it outperforms the case with uniform scaling factor. The four largest 
plants belong to the type burning solid fuel, for which there are two competing effects when 
changing from the case “uniform” to the case “fuel type”. First, the prior uncertainty in the 
emission ratio for solid fuel is considerably lower than the average we use in the uniform case, 
which increases the performance of the NO2 measurements. Second, the transfer of 
information from one power plant to the next through the use of the same scaling factor for the 
emission rate is obviously weaker in the case “fuel type” than in the case “uniform”, because 
the information is shared between fewer power plants. For the larger plants the first effect 
dominates the second. In the winter case this concerns the first four power plants and in the 
summer case the first two. 

Figure 6 shows the uncertainty reduction for the other sector at spatial scales from the entire 
domain to grid cell and all experiments in the winter (left) and the summer (right) periods. The 
default case performs better than experiment 2 over all scales. The MAP improves the impact 
of the CO2M measurements over all scales and in the summer and winter cases. Over our 
study domain, the impact of the MAP is particularly high in the winter case. Increasing the 
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differentiation of the scaling factor for the NO2/CO2 emission ratio of the power plants (from 
experiment 4 to experiment 5 to experiment 6) yields a slight decrease of the performance of 
the other sector. 

This is a typical example demonstrating a general feature of the CCFFDAS, namely that, 
through the atmospheric constraint, better prior information (same emission ratio between 
power plants) on one sector (here electricity generation) is translated to better information on 
the remaining sectors (here the other sector). Similarly, the reduced prior uncertainty for the 
power plants (experiment 7), yields a slight performance increase for the other sector. 

We summarise the results of the seven experiments as follows: We find that XCO2 
measurements alone provide a powerful constraint on emissions from larger power plants and 
a constraint on emissions from the other sector that increases when aggregated to larger 
spatial scales. The MAP improves the impact of the CO2M measurements for all power plants 
and for the other sector on all spatial scales. Over our study domain, the impact of the MAP is 
particularly high in the winter case. NO2 measurements provide a powerful additional 
constraint on the emissions from power plants and from the other sector. Through the 
atmospheric constraint, more prior information on the CO2 emissions from power plants or on 
the differentiation of the NO2/CO2 emission factor reduces the uncertainty in CO2 emissions 
from the other sector. 

Our results suggest that the capability of CO2M measurements to constrain fossil fuel 
emissions varies between summer and winter cases. The main factor behind the larger 
constraint in the summer case are lower random and systematic errors in XCO2 
measurements. There are, however, exceptions related to factors such as cloud cover and 
atmospheric transport. The setup of the CCFFDAS and of the experiments focus on specific 
uncertain elements in the processing chain and its inputs.  

Further uncertain factors such as structural model errors are not covered, so that the 
quantitative assessments with the current prototype might be interpreted as a lower limit for 
posterior uncertainty. We can, however, expect that, with sufficient research effort, future 
CCFFDAS’s will be able to benefit from more accurate models of fossil fuel emissions (finer 
sectoral resolution, further observational constraints), of natural fluxes (more terrestrial 
observations including CO2M measurements of solar induced fluorescence, better 
meteorological driving data), and of atmospheric transport (constrained by observations of 
local meteorological conditions) and improved prior information. In this sense our performance 
assessments may provide a realistic indication of what can be achieved. In summary we find 
that the combination of CO2M with a suitable inversion system can provide useful estimates 
for urban scale emission reporting/verification. As for the above described global CCFFDAS 
(Kaminski et al., 2022), possible application modes are either a verification mode, in which the 
system is operated largely independently from inventory information or a synergy mode that 
derives a best emissions estimate by integrating bottom up information. 

In a further set of experiments we used the local CCFFDAS to explore the added value 
provided by a co-emitted species, namely NO2 and the effect of the random error in the NO2 
retrieval. Figures 7-9 show the following 4 cases (systematic error in all cases 0.3 1015 
molec/cm2):  

• No NO2 (above Experiment 1)  

• Random error 0.5 1015 molec/cm2 (Lorente et al., 2019; above Experiment 4),  

• Random error 1.5 1015 molec/cm2 (upper limit specified in the mission requirements 
document) 

• Random error 0.25 1015 molec/cm2 
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Figure 7: Uncertainty for the 10 largest power plants in domain 

 

Figure 8: Uncertainty for emissions from other sector (complement of electricity generation 
sector) for scales from domain, to city to district, to grid cell.  
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Figure 9: Uncertainty for emissions from other sector (complement of electricity generation 
sector) for case without (left) and with (right) NO2 random error 0.5 10-15 molec/cm2. 

The impact of the random error in NO2 observations (Figures 7-9) can be summarised as 
follows: 

• NO2 still useful when random error is tripled 

• Reduction in NO2 random error (to level just below that of systematic error) yields a 
small benefit (extra uncertainty redution of ~10% at city scale). 

We note that in addition to the assessments presented here, WP4.3 used the local CCFFDAS 
to assess the impact of the domain boundary on the posterior emission uncertainty.   
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3 Carbon Tracker Europe-CH4 

3.1 System Description 

Carbon Tracker Europe – CH4 (CTE-CH4) is an atmospheric inverse model that optimizes 
global surface CH4 emissions region-wise based on an EnKF (Evensen, 2003) used to 
minimize a cost function: 

𝐽 = (𝑥 − 𝑥𝑏)
𝑇
𝑃−1(𝑥 − 𝑥𝑏) + (𝑦–𝐻(𝑥))

𝑇
𝑅−1(𝑦 − 𝐻(𝑥)), (𝑒𝑞. 1) 

where x (dimension N) is a state vector that contains a set of scaling factors that multiply the 

CH4 surface emissions (E) that we wish to optimize, starting from a prior estimate of these 
emissions (Eb) and scaling factors xb. P is the covariance matrix of the state vector, y is a vector 

of atmospheric XCH4 observations, R is a covariance matrix of the observations y, and H is 
an observation operator. In the basic set-up, the cost function in Eq. (1) is minimized using an 
EnKF with 500 ensemble members. The TM5 chemistry transport model (Krol et al., 2005) is 
used as an observation operator that transforms emissions E into simulated atmospheric XCH4 
(H (x)). The emissions E are optimized weekly, with an assimilation window smoother length 
(lag) of 5 weeks. Anthropogenic and biospheric emissions are optimized, while emissions from 
other sources (fire, termites, and oceans) are not optimized. The optimal weekly mean CH4 
fluxes (Ftot), in region r  and time (week) t, are calculated as follows:  

𝐹𝑡𝑜𝑡(𝑥, 𝑦, 𝑡) = 𝜆𝑏(𝑥, 𝑦, 𝑡) ∙ 𝐹𝑏𝑖𝑜(𝑥, 𝑦, 𝑡) + 𝜆𝑎(𝑥, 𝑦, 𝑡) ∙ 𝐹𝑎𝑛𝑡ℎ(𝑥, 𝑦, 𝑡) + 𝐹𝑜𝑐𝑒(𝑥, 𝑦, 𝑡) + 𝐹𝑓𝑖𝑟𝑒(𝑥, 𝑦, 𝑡)

+ 𝐹𝑡𝑒𝑟𝑚(𝑥, 𝑦, 𝑡), (𝑒𝑞. 2) 

where Fbio, Fant, Ffire, Fterm, Foce, are the prior emissions from the biospheric, anthropogenic 

activities, fire, termites and oceans, respectively. CTE-CH4 optimizes the scaling factors λ so 
that CH4 fluxes from anthropogenic and biospheric sources are solved simultaneously. The 
fluxes from other sources are not optimized. The spatial optimization resolution varies from 1° 
x 1° (latitude x longitude) to 6° x 4°, depending on the chosen inversion set-up. The highest 
1° x 1° optimization resolution is typically applied to Northern High Latitudes (>50°N) and 
Europe. The anthropogenic and biospheric sources are assumed independent, and the 
uncertainty of the prior fluxes over land is assumed to be 80% and 20% over oceans. The 
spatial correlation length varies in land areas from 100 km to 500km (ocean 900 km) between 
optimization regions based on the grid/optimization region size and observation density. For 
the regions where fluxes are optimized at 1° x 1° resolution, correlation length is 100 km. We 
apply no prior correlation on temporal dimensions.  

Prior Emissions 

Prior emissions include biospheric, anthropogenic, fire, termites and ocean sources and these 
are taken from process-based models and inventory data. For biospheric fluxes, we use the 
estimates from LPX-Bern DYPTOP v1.4 model (Lienert et al., 2018) and the ensemble of 
Global Carbon Project models (Saunois et al., 2020). For other a priori sources, we used 
estimates from EDGAR v6.0 (Crippa et al., 2020) for anthropogenic, GFED v4.2 (Giglio et al., 
2013) for fire, VISIT (Ito et al., 2012) for termites, geological sources (scaled to 23 Tg CH4 /yr) 
from Etiope et al (2019) and ocean sources from Weber et al (2019).  

Atmospheric observations 

CH4 fluxes are constrained with atmospheric methane mole fraction data mainly from the 
Integrated Carbon Observation System (ICOS), NOAA ObsPack v2.0 and World Data Center 
for Greenhouse Gases (WDCGG) which contains data from global in situ stations. In addition, 
we add the northern high latitudes (NHL) observations from in situ stations of Finnish 
Meteorological Institute (FMI), National Institute for Environmental Studies (NIES), and Max 
Planck Institute for Biogeochemistry (MPI-Biogeochemistry). The data contains both weekly 
discrete air samples and hourly continuous measurements. The hourly data is pre-processed 
before inversion by taking daily averages similarly to Tsuruta et al. (2017). The observation 
uncertainties are defined for each site and observation based on site characteristics and 
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measurement accuracy. The observation uncertainty includes also information about TM5’s 
ability to reproduce the mole fractions. During the assimilation process, if the absolute 
differences between observations and prior mole fractions are larger than 30 ppb, the 
observations are rejected, i.e. not assimilated to constrain the fluxes.  

For inversions with TROPOMI data two retrieval products are used: SRON operational product 
(OPER) and University of Bremen WFMD research data (WFMD). Both data are pre-
processed to 1° x 1° daily resolution by taking median XCH4 of the grid as the observation. 
For the calculation of the averaging kernel, the prior XCH4 and profile information is taken 
from the sounding which has closest XCH4 value to the daily median. The observational 
uncertainties are calculated as aggregation errors + transport model errors. The aggregating 
errors are calculated as the standard deviation of XCH4 values in 1° x 1° in the daily grid. The 
minimum aggregation error is set as 5 ppb. The transport model error is set as a globally 
uniform value of 15 ppb, i.e., the minimum observational uncertainty is theoretically 20 ppb. 

 

3.2 Analyses 

3.2.1 Uncertainty estimates in ground-based and satellite 
inversions  

FMI studied the impact of the inversion set-up on the posterior flux uncertainty estimates in 
connection to assimilation of satellite and ground-based surface observations of methane into 
the Carbon Tracker Europe – CH4 (CTE-CH4) atmospheric inversion model. Satellite and 
surface observations are significantly different in terms of number of data and its uncertainties, 
and the distribution of data in spatial and temporal domains, which calls for re-assessment of 
the inversion set-up. The CTE-CH4 simulations were carried out for year 2018 using three 
sets of atmospheric data: (1) TROPOMI WFMD data (InvWFMD), (2) TROPOMI OPER data 
(InvOPER) and (3) ground-based surface data (InvSURF). In TROPOMI inversions  InvWFMD 
and InvOPER, only the satellite data are assimilated. In addition, assimilation window tests 
were made in a simple pointwise application to test multiple parameter combinations. Further, 
a new set of prior flux uncertainties was tested in a global inversion utilising surface 
observations.   

 

 

3.2.1.1  Impact of assimilation window 
 

Two temporal sequences are used in CTE-CH4 in connection to data assimilation by EnKF; 
the flux optimisation window and lag window, lag smoothing the flux result and ensuring that 
the signals of sources further away in time from the observing sites are included in the analy-
sis. The length of lag-window defines the information content in the observations in the tem-
poral dimension, and therefore, the influence of the size of the lag window in connection to 
different types of observations could be relevant, especially when considering short temporal 
changes. However, in the TROPOMI vs surface inversion work we considered the differ-
ences in observation data intensity through testing of the size of the flux optimisation win-
dow, and the size of the lag window was calculated following earlier approaches as multipli-
cation of the size of the flux optimization window. We applied the flux optimisation window of 
three days for the inversions using the TROPOMI data and seven days for the inversion us-
ing the surface data. The EnKF lag-multiplier of five was employed for both, i.e., the lag-win-
dow is 15 days for the TROPOMI inversions and five weeks for the surface inversion. A 
shorter flux optimisation window was applied in the TROPOMI case as the number of data 
points was significantly larger in TROPOMI data compared to surface data. Sufficient num-
ber of data points is needed to be assimilated for each time step, but the number should be 
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limited to some extent to make the simulations computationally feasible. We found that in in-
versions with the TROPOMI satellite data the flux uncertainty reduction was in annual-to-
monthly scales comparable to the in-situ inversion, in which we used the longer assimilation 
window. These results are presented in Tsuruta et al. (2023). 
 

We also made some tests for the flux optimization window and EnKF lag window in a 
computationally light set-up, testing the EnKF in simplified pointwise application of the 
full CTE-CH4 global system. The aim here was to learn about and develop the system 
towards more efficient utilization of locally measured data at an ICOS supersite. 
Methane observations at the Hyytiälä tall tower, located in the boreal forest and 
wetland region with rural settlements, were assimilated into the model system, where 
prior fluxes, background and assimilation routines were adopted from the global set-
up. Both anthropogenic and biospheric fluxes were optimized. An ensemble size of 
800 was used in the lag and flux optimisation window tests, since uncertainty of the 
state estimate was reduced from prior to posterior and variability in the posterior 
estimates reduced with larger ensembles.  In the tests, the ratio of posterior state 
variance to prior state variance  (δUNC) was solved for a period of four years for the 
biospheric and anthropogenic flux components. δUNC values smaller than one indicate 
a reduction in uncertainty of the state.  

 The size of the flux optimisation window varied from 4 to 19 days, and these sizes 
were multiplied with lag values ranging from 2 to 11 to obtain the lag-window (Figure 
10).  Longer windows seemed to reduce δUNC more than shorter windows, but the 
results should not be interpreted as giving general advice on choice of the length of 
the assimilation window. The results may be related more to the configuration of the 
atmospheric background and prior sources, and choices of other inversion parameters 
and prior uncertainties in the pointwise application rather than to the choice of the 
length of the assimilation window. Further studies are needed on the topic, both using 
the computationally light set-up and the full global system. 

 

 

 

Figure 10. The ratio of posterior state variance to prior state variance (δUNC, color scale)  for 
anthropogenic (left) and biospheric (right) flux components. Shown are different combinations 
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of the length of flux optimisation window (= optimisation resolution, days) and lag for two sets 
of state uncertainty parameters σ, 1 referring to anthropogenic and 2 to biospheric 
components.  

3.2.1.2 The posterior flux uncertainty reductions 
 

The posterior methane fluxes and their uncertainties were studied for the global TROPOMI 
satellite (InvWFMD and InvOPER) and surface inversions (InvSURF). For details see Tsuruta 
et al., (2023). In general, our results show smaller regional emissions in the TROPOMI 
inversions compared to the prior and surface inversion, although they are roughly within the 
range of the previous studies. The inversion results based on the two satellite datasets show 
many similarities in terms of spatial distribution and time series but also clear differences, 
especially in Canada, where CH4 emission maximum is later, when SRON’s operational data 
are assimilated. The TROPOMI inversions show higher CH4 emissions from oil and gas 
production and coal mining from Russia and Kazakhstan. The location of hotspots in the 
TROPOMI inversions did not change compared to the prior. 

The uncertainty reductions in the TROPOMI inversion are spatially more homogeneous, while 
the reductions are highest near the observational stations in InvSURF (Figure 11). This 
indicates that the good spatial coverage of the satellite data reduces the flux uncertainty on 
locations where the surface data are not available. Uncertainty reductions are often high in 
the regions where prior fluxes (and their uncertainties) are high and observations with small 
observational uncertainties are located. Such regions are found near anthropogenic sources 
in Europe, mid southern Canada and near biospheric sources in the HBL area in Canada and 
northern Europe (Figure 11). However, despite high biospheric emissions in Eurasian wetland 
regions, uncertainty reduction rates are not exceptionally high in all inversions. The uncertainty 
reductions in the Arctic ocean and some southern regions are high as those regions are 
optimized region-wise, i.e., there are more observations per optimization region as constraints. 

The grid-wise uncertainty reduction rate is smaller in the TROPOMI inversions in 
general (Figure 11), although the regional posterior uncertainties are comparable to 
InvSURF in the NHL regions, and lower than InvSURF on a global level (Table 4). There 
could be a few explanations for this. First, temporal optimization resolution is different in 
InvSURF (seven days) and the TROPOMI inversions (three days). Since our assimilated 
data in the TROPOMI inversions are aggregated to to 1° x 1° x daily resolution, the number 
of observations may be twice larger in the surface inversion at the location where surface 
data are available (in situ data are also aggregated to daily values). In addition, the observa-
tional uncertainty for the satellite data is generally higher than those for the surface data. In 
general, when observational uncertainty is greater, there will be less influence on the optimi-
zation, leading to a smaller uncertainty reduction rate. 
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Figure 11. Annual mean uncertainty reduction rates above 45°N for 2018 estimated in 
InvWFMD (a,b) and InvSURF (c,d). The left columns (a,c) are for the biospheric fluxes and 
right columns (b,d) for the anthropogenic emissions. 
 

 
Table 4. Annual CH4 emissions and their uncertainty for 2018 (Tg CH4 / year). The uncer-
tainties are calculated as standard deviation of the ensembles. 
 
 
Secondly, we did not use so-called localization (Peters et al., 2005). Localization gives limits 
on how far in distance the observations can influence the fluxes. The grid-wise uncertainty 
reduction close to the observation location would be higher if the localization was used. 
When it is switched off, the uncertainty reduction is likely to be spread more equally in 
space, especially when observation uncertainties are correlated. This also indicates poten-
tially high spatial correlation in the observation uncertainties, which is not properly taken into 
account in the inversions. 
 

We assume observations to be uncorrelated in space and time in order to apply the ensemble 
square root filter (Peters et al., 2005). However, since the uncertainties in the satellite data 
could be highly correlated, the assumption may have not been valid. The TROPOMI retrievals 
errors showed the differences in the biases between snow and snow-free surface. The errors 
may be dependent region-wise over snow surface, but uncorrelated with snow-free surface 
(H, Lindqvist, personel communication). In addition, the observational uncertainty includes 
transport model uncertainty, which can be correlated based on, e.g., parameterization and 
input meteorological data. 
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The assumption of uncorrelated errors has been commonly used in atmospheric inverse 
models (e.g., Saunois et al., 2020). As discussed by Houweling et al. (2017) and references 
therein, accounting for the satellite data uncertainty is challenging. In this study, we assumed 
total observation uncertainty (transport model error + retrieval error) to be at a minimum of 20 
ppb, and did not correct the spatiotemporal patterns of the errors before inversion. The 
uncertainty is within the range of those used in other satellite inversions using SCIAMACHY 
and GOSAT (e.g., Saunois et al., 2020). However, considering that the errors may be 
correlated, non-diagonal terms should have been compensated by higher standard deviations 
in the diagonal approximation. The TROPOMI data are assumed to have better precision than 
previous generation satellites, e.g., Lorente et al. (2021), but further examination is needed to 
quantify the appropriate uncertainty range to be used in the inversions. 

 

 

3.2.1.3  Impact of prior error description 
 

We examined the description of prior errors and the impact of the prior error on the posterior 
fluxes. Other than prior flux uncertainties, the inversion set-up was similar to InvSURF, 
assimilating surface observations. We applied the Carbon Tracker Europe – CH4 inversion 
model (Tsuruta et al., 2017) to study the effect of adjusting the prior biospheric flux 
uncertainties in optimization of the fluxes. We used Global Carbon Project model ensemble 
(Saunois et al., 2020) to define the range of prior biospheric flux uncertainties. As earlier, the 
magnitudes of the prior fluxes were obtained from LPX-Bern.  

Previously, a fixed error (hereafter FIX) with proportion to prior fluxes (e.g., 80%) has been 
commonly used for biospheric fluxes (e.g., Tsuruta et al., 2017).  Here we adjusted the error 
to be aligned with the range of GCP process model estimates (RANGE), and used this error 
to optimise biospheric emissions. The minimum uncertainty was set to 10% and the maximum 
to 500%. Uncertainty bounds were calculated for the optimisation regions, i.e. 1° x 1° in the 
high northern latitudes and regionally elsewhere. In addition, the seasonality of the emissions 
and their uncertainties were taken into account, and the uncertainty was defined on a monthly 
basis. RANGE generally had wider uncertainty bounds for the prior fluxes (Figure 12). Thus, 
the biospheric fluxes had more freedom for adjustment in the inversion. The spatial and 
temporal variability of the uncertainties was also higher than in FIX. 

 

Figure 12. Annual mean prior biospheric flux uncertainty ranges using constant uncertainty 
factor of 0.8 (FIX, bottom figures), and GCP process model ensemble (RANGE, top figures), 
to define the lower flux error boundaries (left) and higher flux error boundaries (right). 
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The posterior biospheric fluxes using RANGE are shown in Figure 13. The fluxes are in av-
erage higher than using FIX, and the largest differences were found in the northern wetland 
regions in Canada and Russia, where prior fluxes were high and their uncertainty ranges 
changed the most. Large increases were also found in Southern America. 
 

 

 

Figure 13. Posterior biospheric methane fluxes estimated by CTE-CH4 with RANGE presen-
tation for prior flux errors, and the difference to FIX error presentation.  
 

The global and high northern latitude flux time series (Figure 14) show higher fluxes in RANGE 
compared to FIX. Biospheric emissions are increased significantly in high northern latitudes 
(>10 Tg CH4 in 2016), and anthropogenic emissions are decreased. The high northern latitude 
total fluxes and their share in global emissions is also increased due to the increase in high 
northern latitude biospheric emissions. The seasonality of the global biospheric emissions is 
changed but mostly not due to high northern latitudes. 

 

 

   

   

Figure 14. Annual mean and monthly biospheric (left), anthropogenic (middle) and total 
(right) methane fluxes. Global fluxes are shown in top figures and high northern latitude 
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fluxes above 50°N in bottom figures. Orange solid lines refer to posterior fluxes with RANGE 
and green to posterior fluxes with FIX. 

 
The wider prior error boundaries in RANGE enabled the posterior increase of biospheric 
emissions, and some regional re-arrangement and changes in the seasonal cycle of emis-
sions. Prior flux uncertainties are therefore an important component in optimization, that 
should be taken into account especially in regional and high resolution studies.  
 

3.3 Conclusions 

 

FMI studied the impact of the inversion set-up and assimilated data on the posterior methane 
flux uncertainty estimates of Carbon Tracker Europe – CH4 (CTE-CH4) atmospheric inversion 
model. We find that the regional monthly wetland emissions in the TROPOMI satellite 
inversions do not correlate with the anthropogenic emissions as strongly as those in the 
surface inversion. We find that the grid-wise uncertainty reduction rate is smaller in the 
TROPOMI inversions in general, but the uncertainty estimates in the TROPOMI inversions are 
more homogeneous in space, and the regional uncertainties are comparable to the surface 
inversion. This indicates the potential of the TROPOMI data to better separately estimate 
wetland and anthropogenic emissions, as well as constrain spatial distributions. The length of 
the assimilation window needs to be chosen depending on the set-up of the inversion and 
number of assimilated data on different temporal and spatial domains. Prior flux uncertainties 
have a significant impact on the optimised regional fluxes, on the share of the biospheric and 
anthropogenic emissions, and on the month-to-month changes in fluxes. The results 
emphasizes the importance of quantifying and taking into account the model uncertainties in 
regional levels in order to improve and derive more robust emission estimates. 
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4 Western Europe XCO2-CO2-14CO2 analytical inversion 
system 

The following analysis is based on a high dimensional CO2 analytical atmospheric inversion 
system covering Western Europe and assimilating XCO2, surface CO2 and/or 14CO2 data. This 
system has been developed in the frame of the CO2 Human Emissions project H2020 project 
(CHE, https://www.che-project.eu/), and used in the WP4 of this project, which evaluated the 
potential of measurements of tracers for fossil fuel CO2 (FF CO2) like radiocarbon, to support 
the separation between the biogenic and anthropogenic signals when assimilating CO2 and 
XCO2 data (see CHE D3.5, https://www.che-project.eu/node/242 and D4.4, https://www.che-
project.eu/node/243).  

Pseudo-data experiments (OSSEs) were conducted with this system to explore the 
complementarity between a CO2M-like spaceborne imager and surface CO2 and 14CO2 
networks for the monitoring of the anthropogenic emissions of CO2 at the regional to local 
scales. The analysis from CHE encompassed a general assessment of the respective 
potential of each type of observation component, or of their combinations. The analysis here 
complements this assessment by focusing on the added value of the surface 14CO2 network 
depending on uncertainties in the natural fluxes of CO2 and on the impact of nuclear emissions 
for the use of this tracer. This indirectly feeds the assessment of the need for including the 
natural fluxes and nuclear emissions in the inversion control vector when assimilating 14CO2 
data, even though the local variations of 14CO2 are primarily driven by fossil fuel emissions. 
Potier et al. (2022) documents both the analysis from CHE and the following ones. 

 

4.1 System Description 

 

The details the inversion system are presented in the deliverables CHE D3.5 and D4.4 and in 
Potier et al. (2022). This section only provides a brief overview of the system. It relies on: 

• A local to regional scale analytical inversion framework (Wang et al., 2018), which 
controls CO2 anthropogenic emissions (fossil fuels, FF, and biofuels, BF) from large 
cities and industrial plants (point sources, PS) (Figure 15a), 14CO2 nuclear emissions, 
regional budgets of more diffuse CO2 emissions or of CO2 natural fluxes (NEE) (Figure 
15b) at hourly resolution, in addition to isotopic signatures (for the BF, and the soil 
heterotrophic respiration). 

• A zoomed configuration of the regional atmospheric chemistry transport model 
CHIMERE (Menut et al, 2013) used to simulate CO2 and 14CO2 over most of Western 
Europe (Figures 15 and 16).  

• Hourly to annual maps of all types of surface CO2 and 14CO2 fluxes, at high spatial 
resolution from CHE. They are used to distribute the local-to-regional-scale budgets of 
the fluxes into corresponding high resolution flux maps (Figure 16) 

• Simulations of the locations and uncertainty of XCO2 retrievals at 12:00 UTC and of 
hourly-CO2 and 7-hour average 14CO2 ground-based data between 10:00 and 17:00 
UTC as a function of time, for different scenarios of the observing system (Figure 17, 
Table 5). For the XCO2 data, we rely on the simulation of the CO2M sampling during 
one satellite overpass over the area of interest generated by the Institut für 
Umweltphysik, Bremen (IUP) in the frame of the ESA-PMIF project (Lespinas et al, 
2020).  

The system diagnoses the uncertainty in the values of the control variables from the inversion 
(the "posterior uncertainty") from the "prior uncertainty" assigned to the prior value of these 
variables that the inversion corrects to better fit the observations, from the observation 
sampling, and from the measurement and model errors (denoted together "observation 
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errors") based on the observation operator projecting the control space into the observation 
space (i.e., the sequence of the mapping of the fluxes, of the atmospheric transport model and 
of the sampling corresponding to the observations). Our experiences and analysis focus on 
this computation of the posterior uncertainty and on its comparisons to the prior uncertainties 
that are fixed through general assumptions on the accuracy of the inventories, of the models 
simulating NEE products etc. 

Inversions are conducted over a 1-day window from 0:00 to 24:00 UTC, on July 1 2015, i.e., 
in summer, when the biogenic fluxes are relatively high.  

 

a) b) 

  
Figure 15: a) Administrative regions and coarser areas for which the CO2 biogenic flux budgets and the 
anthropogenic emission budgets are controlled. The red line delimits the 2 km × 2 km resolution zoom of 
the CHIMERE transport model. b) Main area of interest in the 2 km × 2 km resolution zoom of the CHIMERE 
transport model, i.e. the 23 administrative regions where the CO2 anthropogenic emissions from major 
urban areas (contours of the urban areas also represented here) and point source are controlled separately 
by the inversion.  
 

 

Figure 16: CO2 flux map (based on values from the TNO inventory and VPRM simulations for 1 July 2015 at 
12:00) over the atmospheric transport modelling grid. The red lines delimit the spatial resolution changes 
within the domain (from 2 km to 10 km and then 50 km from the middle to the edges of the domain) 
 

   

a) b) 
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Figure 17: Observation system a) Simulation (from  IUP / ESA-PMIF project) of the XCO2 sampling and 
observation error standard deviation (in ppm) for a selected orbit of the spaceborne spectral imager set at 
12:00UTC, b) Ground-based 7-hour average 14CO2 and hourly CO2 observation networks with 113 stations 
defined by Marshall et al. (2019), based on existing or potential measurement sites. The in situ data are 
used during the period 10:00-17:00. 
 

Table 5: measurement, model, and total observation errors (1σ). 

 

 

Table 6 provides labels for the different sets of experiments as a function of the sets of pseudo-
observations that are assimilated, using or combining the satellite data, the surface CO2 data 
and/or the surface 14CO2 data (Figure 17).  

 

Table 6: Labels for the different types of experiments 

 

Here, the dependence of the added value of the 14CO2 data to the uncertainties in the NEE or 
in the nuclear emissions is investigated by conducting sensitivity tests in which these 
uncertainties in the NEE or in the nuclear emissions are ignored, i.e., in practice, by excluding 
the corresponding components from the control vector of the inversion. For the sake of 
simplicity, we do not define specific labels for this and the text clarifies whenever diagnostics 
refer to the tests "ignoring/without NEE or nuclear emissions". 
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When analysing the results from the inversions and assessing the potential of the different 
types of observation networks, we focus on the standard deviation of the prior and posterior 
uncertainties in flux budgets, and on their relative difference (called uncertainty reduction or 
UR hereafter): 

    𝑈𝑅 = 1 −
𝜎𝑝𝑜𝑠𝑡

𝜎𝑝𝑟𝑖𝑜𝑟
   

The definition of the prior uncertainties in the different control variables of the inversions is 
detailed in the deliverables from CHE (and in Potier et al. (2020)). It yields a ~30% uncertainty 
in the CO2 fossil fuel emissions at scale of the day and of the individual administrative regions.  

The surface data are assimilated between 10:00 and 17:00 only, and the satellite overpass 
occurs at 12:00 UTC, therefore the temporal footprint of the observational constraint for the 
correction of the prior estimate of the emissions depends on the observation network and does 
not cover the full day. This has been analysed in the deliverables from CHE and we do not 
address this topic here. Furthermore, the deliverables from CHE make a distinct assessment 
of the performances of the inversion of emissions at the scale of individual cities or point 
sources, which is not resumed here. Finally, this report does not repeat the conclusions of the 
deliverables from CHE regarding the decrease of uncertainties for the NEE itself and the BF 
emissions. The analysis for this new deliverable focuses on the results for FF CO2 emissions 
at the scale of the day and of the regions. Emission budgets for a given region ("regional 
budgets") aggregate the emissions from the corresponding urban areas and point sources and 
the rest of the emissions within the region hereafter. 

To evaluate the added value of ground-based networks, we define ∆𝑈𝑅𝑇𝑒𝑠𝑡
𝑅𝑒𝑓

  as the difference 

of UR for 24-h and regional budgets of FF CO2 emissions between a test configuration and a 

reference configuration: ∆𝑈𝑅𝑇𝑒𝑠𝑡
𝑅𝑒𝑓

= 𝑈𝑅𝑇𝑒𝑠𝑡 − 𝑈𝑅𝑅𝑒𝑓. In these cases, the reference 

configurations are the ones when assimilating the data from the satellite track, either alone or 
with CO2 data from the ground network (INV-SAT and INV-SAT-CO2 see Table 6). 

 

 

4.2 Analyses 

 

4.2.1 Constraints for the FF emission estimates from the different 
observation systems 

 

This first subsection summarizes the type of analysis developed in the deliverables of CHE, 
with some updates of the results that are associated to various adjustments of the inversion 
configuration and experiments. It provides reference scores of UR for the assessment of the 
impact of uncertainties in the NEE and in the nuclear emissions. 

When assimilating the data from the satellite track only (in INV-SAT inversion), the uncertainty 
reductions for the 24-hour regional budgets of FF emissions range from 0 to 18% in the main 
area of interest (Regions 1 to 23 in Figure 18).  

Assimilating the data from the ground-based hourly CO2 network only (in INV-CO2 inversion), 
reveals the limited role of the horizontal atmospheric transport near the surface to propagate 
URs from regions with several measurement stations to other regions (Figure 18). URs of 
more than 4%, (median at 12% and maximum at 13%), for 24-h budgets can be achieved in 
regions with 3 stations, like Île-de-France (Figure 18, Reg. 1, 12%), and North Rhine-
Westphalia (Reg. 4, 13%) in the main area of interest, or in regions with more stations outside 
this area like southeast England (10%) and Baden-Württemberg (26%) which have 5 stations. 
However, the UR can also be much lower in regions with many stations, e.g. for Lower-
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Saxony-and-Bremen which has 5 stations but a 4% UR. UR in regions with 1 or 2 stations 
range between 0% and 6%. The URs are generally below 1% for other regions. These URs 
reach lower or comparable values than in the INV-SAT experiment in the main area of interest. 
However, outside the main area of interest, Baden-Württemberg reaches a higher value than 
the largest one with the INV-SAT experiment (Rhineland-Palatinate, Reg. 5, 18%). 

 

 

Figure 18: Uncertainty reduction in INV-SAT, INV-CO2, and INV-SAT-CO2 inversions for 24 h budgets of FF 
emissions of each controlled area in the main area of interest. The number of stars indicates the number 
of stations in each controlled area. The area numbers correspond to the ones in Figure 15b 

 

 

Figure 19: Uncertainty reduction in INV-SAT, INV-14C, INV-SAT-14C, and INV-SAT-CO2-14C inversions for 
24 h budgets of FF emissions of each controlled area in the main area of interest. The number of stars 
indicates the number of stations in each controlled area. The area numbers correspond to the ones in 
Figure 15b 
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Only one region of the 2-km resolution model subdomain with 3 stations is located in the 
satellite FOV: North Rhine-Westphalia (Reg. 4). When comparing the URs for the 24-h 
regional budgets of FF emissions from INV-SAT-CO2 to that from INV-SAT and INV-CO2 
(Figure 18) two significant changes can be seen. The first one is the increase of 5% of the UR 
for this region, i.e. less than the UR for this region in INV-CO2 (12%). The second one is the 
increase of UR for the regions outside the satellite FOV with more than 3 ground-based 
stations from nearly 0% to values that are nearly the same as in INV-CO2. The URs at 24-h 
scale in INV-SAT-CO2 are smaller than the addition of URs in INV-SAT and INV-CO2 
experiment. 

The spatial distribution of the regional URs for 24-h, when using surface 7-h-average 14CO2 
data alone is similar to that when using hourly-CO2 surface data only (Figure 19). The URs on 
daily budgets are larger in INV-14C, i.e. when using the sampling of 14CO2 representative of 
7-h-averages of the mole fractions, than in INV-CO2, when using 7 hourly CO2 data at each 
site. In most regions these differences remain relatively small except in Region 4, North Rhine 
Westphalia. The higher potential of 14CO2 data (7-hour averages) than hourly CO2 data to filter 
the signal from FF emissions, if both were measured at the same temporal resolution, is 
balanced by the finer temporal resolution of the hourly CO2 continuous measurements. The 
hourly CO2 data's finer temporal resolution helps capture the high frequency patterns of the 
signal from FF emissions. Section 3.2.2 further assess how much the uncertainties in the NEE 
lead to larger URs when using 14CO2 data than when using hourly CO2 data.  

The fact that the URs for two combined networks is smaller than the sum of the URs for the 
individual networks that was shown when comparing INV-SAT, INV-CO2 and INV-SAT-CO2, 
also applies when adding the surface network i.e. when comparing e.g. INV-SAT-14C to INV-
SAT and INV-14C or INV-SAT-CO2-14C to INV-SAT-CO2 and INV-14C. The combination of 
7-h-average 14CO2 data with other types of data does not lead to further synergies of the 
advantages for each network: the spatial extent of the satellite observation, the temporal 
coverage of the ground-based networks, the temporal resolution of the hourly-CO2 surface 
network, and the higher sensitivity to FF emissions of the 7-h-average 14CO2 network. In 
North Rhine-Westphalia, where the configuration is favourable, with 3 stations in the satellite 
FOV, the UR for the daily budget increases from 18% with INV-SAT to 33% with INV-SAT-
CO2-14C (Figure 19, Reg. 4). This configuration leads to 6.6% posterior uncertainty. In Ile-
de-France (Reg. 1) outside the satellite FOV and with 3 stations, the UR reaches 21% in INV-
SAT-CO2-14C, reaching 18% posterior uncertainty. In Saarland (Reg. 6), in the satellite FOV 
and without stations, the UR remains similar in INV-SAT-CO2-14C as in INV-SAT, 17%, 
corresponding to 15% posterior uncertainty. 
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4.2.2 Impact of the uncertainty in the Net Ecosystem Exchange 

 

 

Figure 20: Average on the main area of interest of the UR on 24 h FF regional budgets in a set of inversion 

configurations, with (blue) and without (orange) NEE and average of the difference between ∆𝑈𝑅𝑇𝑒𝑠𝑡
𝑆𝐴𝑇  with 

and without NEE (green). Negative values highlight an increase in the additional observation network 
potential when NEE is taken into account. Positive values highlight a decrease in the additional observation 
network potential when NEE is taken into account. High absolute values highlight strong NEE impact. 

 

Figure 21: Impact of the NEE on the ground network capability at the top of the satellite observations for 

each area of control in the main area of interest: differences between ∆𝑈𝑅𝑇𝑒𝑠𝑡
𝑆𝐴𝑇  on 24 h FF regional budgets, 

with and without NEE. Negative values highlight an increase in the additional observation network potential 
when NEE is taken into account. Positive values highlight a decrease in the additional observation network 
potential when NEE is taken into account. High absolute values highlight strong NEE impact. The number 
of stars indicates the number of stations in each controlled area.  The area numbers correspond to the 
ones in Figure 15b 
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The INV-SAT experiment ignoring the NEE shows significantly larger URs for the FF regional 
24-h budgets (Figure 20). This increase of the URs yields posterior uncertainties in 24-h 
regional budgets which can reach values as low as 6.7% in the satellite FOV (not shown). The 
surface network has many stations mostly sensitive to the NEE signal, therefore it is expected 
to support the distinction between NEE and FF emissions in the inversion, even when the 
stations measure CO2 only. In inversion INV-CO2, the UR for FF emissions is higher when 
ignoring the NEE, reaching a range between 18 % and 46 % for 24 h budgets in the regions 
with more than three stations. However, the comparison between results from INV-SAT-CO2 
and INV-SAT when ignoring these fluxes hardly demonstrates a potential of the surface CO2 
network to reduce the problem of attribution between FF emissions and the NEE (Figure 20). 

Figure 20 shows ∆𝑈𝑅𝑆𝐴𝑇−𝐶𝑂2,𝑁𝑜𝑁𝐸𝐸
𝑆𝐴𝑇  larger than ∆𝑈𝑅𝑆𝐴𝑇−𝐶𝑂2

𝑆𝐴𝑇  on average; i.e. adding the CO2 

network when ignoring the NEE yields a larger increase in the UR than when accounting for 
NEE. This is linked to the smaller UR associated with CO2 data when accounting for NEE. 
There is a lack of indirect feedback on the UR for FF emissions from the lowering of 
uncertainties in NEE when complementing the satellite data with CO2 data. 

Concerning the impact of NEE, in INV-14C, the URs for FF emissions in the regions with more 
than three stations are higher when ignoring the NEE, reaching a range between 15 % and 
33 % for 24 h budgets. The comparison of the experiments INV-14C with and without NEE 
shows a much smaller impact of NEE on the URs for FF emissions than in experiments INV-
CO2 or INV-SAT, which is directly linked to the much smaller sensitivity of 14CO2 data to NEE 

than CO2 data. An interesting consequence is that, on average, ∆𝑈𝑅14𝐶
𝑆𝐴𝑇, ∆𝑈𝑅𝑆𝐴𝑇−14𝐶

𝑆𝐴𝑇  (Figure 

20) or ∆𝑈𝑅𝑆𝐴𝑇−𝐶𝑂2−14𝐶
𝑆𝐴𝑇−𝐶𝑂2  (not shown) is slightly larger when accounting for the NEE than when 

ignoring it.  

The potential of the 14CO2 network to complement the satellite observation is higher when 
NEE is accounted for, while the result for the surface CO2 network is the opposite. This 
increase in the impact of the 14CO2 network when accounting for NEE is however relatively 
small, reaching its maximum in the region of North Rhine-Westphalia, which has three 
stations, and where the posterior uncertainty decrease for the 24 h regional budgets of FF 
emissions from INV-SAT to INV-SAT-14C is 15 %. 

 

4.2.3 Impact of the 14CO2 Nuclear Emissions  

 

The impact of nuclear emissions in the inversions assimilating 14CO2 data is analysed by 
conducting experiments where these emissions are ignored. The comparison of INV-14C 
experiments with and without nuclear emissions shows an increase of the URs, in the range 
of 0-1.7 percentage points (Figure 22), when these nuclear emissions are ignored. In the main 
area of interest, the most impacted areas are the Zeeland, Brabant/Bruxelles, Anvers and 
Flanders, which are regions where the stations are close to nuclear sites (Figure 22). Outside 
the main area of interest, similar to what is seen in this area of interest, the impact is generally 
low but it can reach up to 9% points difference for Baden-Wurttemberg , - (Figure 22). 
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Figure 22: Maps of the 2 km resolution area with the differences between uncertainty reductions on 24 h 
FF budgets with and without nuclear emissions (shades of red) in INV-14C inversions and uncertainty 
reductions on F14C emission budgets from nuclear sites (dots, blue palette). Green dots indicate the 
ground stations. 

 

4.3  Conclusions from the experiments with the Western Europe XCO2-
CO2-14CO2 analytical inversion system 

 

The new analysis in CoCO2 with the Western Europe XCO2-CO2-14CO2 analytical inversion 
system from CHE confirms the natural assumption that the added value of 14CO2 surface 
networks is emphasized when the uncertainties in the NEE are large. However, accounting 
for the uncertainties in the NEE, as well as accounting for the uncertainties in the nuclear 
emissions, impact significantly the results from inversions assimilating 14CO2 data only. 
Together with the conclusions from the experiments conducted in CHE, this supports: 

- the deployment of very dense CO2-14CO2 surface networks to support the satellite 
observation for regional to local scale inversions of CO2 emissions 

- the use of extended control vectors when co-assimilating CO2 and 14CO2 observations to 
derive FF CO2 emissions, accounting, in particular, for the regional scale uncertainties in NEE 
and for uncertainties in the radiocarbon emissions from individual nuclear sites. Accounting 
for the uncertainties in the radiocarbon emissions is, on average, much less important than 
accounting for the uncertainties in the NEE, but it can have a significant impact for specific 
regions. 
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5 LOTOS-EUROS 

5.1  System Description 

The LOTOS-EUROS regional emission inversion system is based on a 4D-var approach. In 
the CoCO2 project, the model domain covers Europe on coarse resolution (10-25 km). The 
inversion system specifies uncertainties in emissions in terms of gridded fields of adjustment 
factors; the 4D-var inversion then searches for an optimal set of emission adjustment factors 
that give the best match with observations, taking into account the observation representation 
error of the model. 

The parameterization of the a priori emission uncertainty is one of the main inputs to the 
inversion system. It defines the freedom that the inversion system has to change the emissions 
both in space and in time. Traditionally, the emission uncertainty is parameterized by a set of 
standard deviation and spatial and temporal correlation lengths. These parameters should be 
tuned such that the range of possible emissions could explain for a large part the difference 
between the simulations and the observations. If the possible range of emissions is too small, 
the inversion system will not be able to find optimal emissions that give a good match with the 
observations, or it will provide “optimal” emissions that are outside the assumed uncertainty 
range. If on the other hand the allowed range of emissions is too large, the inversion system 
will easily find an optimal emission set, but one might wonder how realistic the assumed 
uncertainty is. In any case it is also important to consider that uncertain emissions are not the 
only cause of a difference between simulations and observations, as also for example 
boundary conditions and model transport errors contribute to this. 

For preparation of an inversion it is therefore important to evaluate the a priori emission 
uncertainty in detail. Within the CoCO2 project, TNO has prepared an uncertainty 
parameterization together with its CO2 emission inventory. In the study described here, this 
uncertainty is evaluated to see what the impact is on model simulations. Simulations with 
LOTOS-EUROS are performed to investigate the impact of the allowed variability in the 
emissions on simulated mixing ratios. This will provide a first insight in whether the specified 
uncertainty is sufficient to explain the difference between simulations and observations, or that 
other sources of uncertainty are needed to explain this.  

 

5.2  Analyses 

5.2.1 Emission uncertainty parameterization 

An uncertainty parameterization is available for the TNO-GHGco-v4 emission inventory for 
2018, as used throughout this project. The inventory provides anthropogenic emissions of 
Green House Gasses and co-emitted species at a resolution of 0.10ox0.05o (about 5x5 km 
and European latitudes). For CO2, the inventory distinguishes emissions due to fossil fuels 
and bio fuels. Figure 23 provides an example of the fossil-fuel related CO2 emissions provided 
in this inventory. 
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Figure 23: Left: Fossil-fuel related CO2 emission in the TNO-GHGco-v4 inventory. 
Right: standard deviation of relative uncertainty per grid cell for CO2 RoadTransport 

emissions. 

For the CoCO2 project, a parameterization of selected uncertainties for the fossil fuel related 
emissions has been created too. The uncertainties are described in detail in Super et al.(2023, 
submitted); here we summarize what is available in the parameterization and how it can be 
used to create an ensemble of realistic emissions. 

The uncertainty parameterization used here was tagged v2.0. To create uncertain CO2 
emissions as model input, the following content is used: 

1. A standard deviation for the relative uncertainty of each individual CO2 emission in the 
inventory. The inventory consists of a list of emissions that represent an area emission 
in a grid cell or a point source emission, for a specific source sector and country, and 
for each of these a number is available. An example of the standard deviations for the 
source category RoadTransport is provided in the right panel of Figure 23. The map 
shows clearly the country borders, as the gridded standard deviations have been 
determined based on country reports of emissions and associated uncertainties. 

2. A spatial correlation length scale L in km, for each of the source categories. This 
defines the correlation ri,j between the uncertainty of an emission in a grid cell i and the 
uncertainty of an emission in another grid cell j that are at distance di,j in km from each 
other; the correlation is defined following an exponential profile: 

𝑟𝑖,𝑗 = 𝑒−𝑑𝑖,𝑗 𝐿⁄  

Table 7 shows the length scales per source category. Only for categories Other 
stationary combustion (which includes for example domestic heating), Road transport, 
and Shipping, a length scale is defined. 

 
The uncertainty in a country total is defined by the combination of the standard deviation field 
and the spatial correlation. Ultimately, the uncertainty in the country total computed in this way 
should match with the uncertainty reported for each country, but that is not yet the case in the 
current uncertainty product. For new releases of the product it is planned that the standard 
deviation fields are scaled per country to ensure that the totals do actually match, but for the 
moment, the reported country uncertainties are simply ignored and we assume that the 
standard deviation field defines the uncertainty together with the length scale. For most 
categories a zero length scale is assumed, since these are either dominated by large point 
sources (such as categories A (Public Power Generation) and B (Industry)), or because no 
information on length scales could be derived. The emissions from these categories in two 
grid cells could therefore differ from their a priori value in opposite direction, even if these cells 
are close to each other. The gridded standard deviations for these categories is high (usually 
100%), but since no spatial correlation is assumed, the uncertainty in a country total is smaller 
as both higher and lower emissions than the a priori values occur.  
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Table 7 – Emission source categories and associated correlation length scale 

GNFR Source category L [km] 

A Public Power Generation 0 

B Industry 0 

C Other stationary combustion 26 

D Fugitives 0 

E Solvents 0 

F Road transport 23 

G Shipping 100 

H Aviation 0 

I Offroad transport 0 

J Waste treatment 0 

K Agricultural livestock 0 

L Agricultural other 0 

 

 
 

5.2.2 Emission ensemble 

 

 
An ensemble of N=20 possible emission files has been drawn out of the uncertainty definition. 
The following steps were taken: 

1. For each of the 3 correlation lengths L that are used, an eigenvalue factorization of a 
spatial correlation matrix CL defined on the emission grid was created: 

𝐶𝐿 = 𝑄𝐿𝛬𝐿𝑄𝐿
𝑇The elements of CL are set to spatial correlation between two source cells 

given their distance and the correlation length scale following the exponential decay. 
One side of the correlation matrix CL has a size to the number of grid cells in the 
emission domain, which is here 756,000 in total. The full matrix CL would be too large 
to be stored, and therefore it is only defined as an operator that computes non-zero 
elements. The eigenvalues in the diagonal matrix ΛL and vectors in QL are then 
computed using Arnoldi iterations. For larger length scales the eigenvalue spectrum 
drops quickly to zero, and therefore it is sufficient to only compute the largest 
eigenvalues and corresponding eigen vectors. However, the factorization is 
computationally still very demanding, and takes multiple days to be finished.  

2. An ensemble of N random samples is drawn from the distribution defined by the 
factorized correlation matrix using:  

 

𝑥𝐿,𝑖 = 𝑄𝐿𝛬𝐿
1 2⁄ 𝑤𝐿,𝑖, 𝑖 = 1, . . , 𝑁wL,i is a random vector with a size equal to the number of 

eigenvalues in ΛL drawn out of the normal distribution. Each vector xL,i represents a 
possible field of emission perturbations out of a distribution with spatial correlation L.  

3. An ensemble of N realistic emission inventories is created as a perturbation of the a 
priori emissions. For a source category s that is spatially correlated with length scale 
L the perturbed emissions are: 
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𝐸𝑠,𝑖 = 𝐸𝑎,𝑠(1 + 𝜎𝑠𝑥𝐿,𝑖)Ea,s represents the a priori inventory for category s and σs the 

corresponding standard deviation field. For a spatially uncorrelated category the 
perturbed emissions are: 

  

𝐸𝑠,𝑖 = 𝐸𝑎,𝑠(1 + 𝜎𝑠𝑣𝑠,𝑖)vs,i is a random field with the size of the source cells drawn from 

the normal distribution. The random numbers might cause negative emissions which 
are then reset to zero. 

 
The impact of the uncertain emissions on simulated CO2 mixing ratios has been evaluated 
with the LOTOS-EUROS model. For each of the N emission perturbations a simulation has 
been performed over 2018, each using a different perturbed emission fields as input, but using 
the same temporal distribution within the year, and the same (climatological) boundary 
conditions, biogenic emissions, and biogenic uptake.   
 
Figure 24 shows maps of the total CO2 emission over 2018 on the model resolution (left panel), 
and the standard deviation in the ensemble of emissions (right panel). The emissions are 
especially strong at locations of power plants, which are often located in more remote areas 
and not surrounded by other sources. Also, the uncertainty is relatively strong at these 
locations. Larger areas with strong emissions are present in England, Netherlands, German 
Ruhr area, and Italian Po-valley. These areas are however not similarly visible in the standard 
deviations, since for example the standard deviations for road traffic emissions are rather small 
due to the assumed spatial correlations. At rural locations the standard deviation seems often 
higher than the (rather low) emission values; investigation showed that this is caused by the 
rather high standard deviations of 100% assumed for some source sectors. Another 
remarkable feature is that there is no uncertainty in the shipping emissions over the Atlantic 
Ocean and Mediterranean, which is a result of the standard deviations actually being zero for 
the international shipping in the uncertainty inventory. 
 

 
Figure 24 – Map of total CO2 emission in 2018 from CoCO2 inventory (left),  

and standard deviation in the derived ensemble of perturbed emissions (right). 
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5.2.3 Simulated mixing ratios 

 

The simulated CO2 mixing ratios in the ensemble provide a first insight on the impact of the 
uncertainty defined for the fossil-fuel related emissions. 

As example, Figure 25 shows the ensemble mean (left) and standard deviation (right) of 
monthly averaged surface mixing ratios of CO2 at 15:00 for June-August 2018. At this time of 
the day, the atmosphere is assumed to be well mixed and mixing ratios are less sensitive to 
local sources. Highest mixing ratios are seen over land, with even higher mixing ratios over 
urbanized locations, such as the German Ruhr area and northern Italy. These urbanized 
locations also have the highest standard deviations (right panel) as the ensemble is driven by 
uncertainty in anthropogenic emissions. In general, the uncertainty in mixing ratios decreases 
quickly with distance from the source locations, since the differences in mixing ratios are for 
example damped by the biogenic uptake or do not reach the surface at all. This suggests that 
the specified uncertainties in the fossil-fuel related emissions are only visible at measurement 
locations that are close to, or surrounded by, these emissions. An inversion system that aims 
at reducing these emissions should therefore analyse the observations from such locations 
and could not rely only on remote sites. 

 

Figure 25 – Ensemble mean (left) and ensemble standard deviation (right) of monthly averaged 
CO2 surface mixing ratios at 15:00 for May 2018. 

5.2.4 Concentrations at observation sites 

 

Observations of CO2 for 2018 have been collected from the ICOS portal. For each of the 
observation locations, timeseries of simulated mixing ratios were extracted from the ensemble. 
The difference between the observations and a model simulation is partly due to uncertainty 
in fossil fuel emissions that defines the ensemble; assimilation of these observations might 
reduce this uncertainty and lead to better emission estimates. 

To see which of the observation sites are sensitive to the uncertainty in the fossil fuel 
emissions, Figure 26 shows the maximum standard deviation in the ensemble at 15:00 within 
the period June-August. For stations within the boundary layer, the afternoon samples are 
usually those that are used in an assimilation as the atmosphere is then well mixed, and 
observations are not strongly influenced by nearby sources. The result shows that the 
maximum standard deviations are found for stations Lutjewad in the north of the Netherlands, 
Lindenberg in the east of Germany, and the Observatoire Pérenne de l’Environment in the 
north of France. These sites are in the selected season influenced by fossil fuel emissions 
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from the urbanized areas of The Netherlands and Germany, and probably also emissions from 
power plants in the east of Germany.  

 

Figure 26 – Maximum std.dev. over Jun-August in simulation ensemble 

 

As illustration, a time series of the CO2 mixing ratio’s in Lindenberg at 15:00 is shown in Figure 
27. The maximum ensemble standard deviation that was shown in Figure 26 occurs halfway 
August. The spread in the ensemble is then able to explain a large part of the difference 
between the model and observations. That is however not the case for most other days, where 
the spread in the ensemble is usually small. The model is in general able to simulate the 
mixing ratio levels at the site, except for the first weeks of June, where the model strongly 
under-estimates the observations. The large discrepancy during this period cannot be 
explained from uncertainty in emissions only, and is likely to be at least partly due to uncertain 
background mixing ratios from the boundaries. 

Investigation of the time series in other stations and other seasons lead to similar results. For 
selected sites and selected periods, the spread in the ensemble is sufficiently large to explain 
part of the difference between simulations and observations, but more often it is rather small, 
and other uncertainties are needed to explain the difference between observations and 
simulations.  
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Figure 27 – Time series of CO2 mixing ratio’s at 15:00 in ICOS site Lindenberg (Germany); 
black dots are observations, blue solid line ensemble mean mixing ratio’s, with dashed lines the 
2-sigma ensemble spread. 

 

5.3  Conclusions 

Specification of uncertainties in a simulation model and its input is an essential part of an 
inversion system. In this study, the uncertainty parameterization v2.0 for fossil fuel related 
emissions that is available for the TNO/GHGco v4.0 European emission inventory has been 
evaluated for its use in an inversion system.  

The uncertainty parameterization provides (among others) for each of the major emission 
source categories a standard deviation value for each point or area source and a horizontal 
correlation length scale. Together these could be used to draw random samples of realistic 
emission inventories. From the process of generating such samples the following 
recommendations are made: 

• The common method of generating horizontally correlated samples uses an eigen 
value decomposition of a spatial correlation matrix. For the high resolutions on which 
current emission inventories are defined this becomes a computationally demanding 
task. Alternative methods should be developed for this. Such alternative methods 
would also benefit variational inversion systems, which use the eigenvalue 
decomposition to efficiently evaluate the prior term in the cost function and its gradient. 

• For source categories without assumed spatial correlations (mainly dominated by point 
sources), the assumed standard deviation is large (100%), which lead to random 
samples that could be negative. The standard deviations should however be 
interpreted as defining a log-normal distribution, which would avoid occurrence of 
negative values. If this interpretation is used consequently, one should interpret the 
ensemble statistics in terms of median and geometric standard deviation. 

• The uncertainty parameterization shows some unexpected features, for example a 
zero uncertainty for international ship tracks. This is mainly related to the fact that in 
the current release the standard deviation field is not matched with the country total 
uncertainty (taking into account the length scale). This will be taken into account in 
future releases, however. 

An ensemble of realistic emission inventories has been drawn from the uncertainty 
parameterization and was used as input for the LOTOS-EUROS simulation model. The spread 

in the simulated CO2 mixing ratios is largest over urbanized area with high emissions from, for 
example, road transport, and at locations near power plants. At observation sites from the 
ICOS network this spread is hardly visible however, as these are often located at more remote 
locations. Only occasionally the specified uncertainty in fossil fuel emissions is able to explain 
the difference between simulations and observations at some of the ICOS sites. A preliminary 
conclusion is that the uncertainties in emissions that are usually assumed in inversion systems 
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are higher than what is specified in the current emission uncertainty parameterization. Further 
research is therefore needed to make best use of the new uncertainty information in an 
inversion. 
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6 Conclusion 

With the work performed here in Task 5.5 we have explored the impact of specific but 
reasonable choices in the design/set-up of the modelling systems on the posterior uncertainty 
representation of the CO2/CH4 fluxes. This has been done using various inverse modelling / 
data assimilation approaches to reflect the range of modelling systems but also because some 
of the design options could only be assessed in specific systems. The DA systems applied 
here cover scales from global (CCFFDAS), European (CTE-CH4, LOTOS-EUROS) down to 
regional/local (LSCE's Western Europe analytical inversion system, local CCFFDAS set up 
around Berlin). 

The four modelling groups (iLab/ULUND, LSCE, FMI and TNO) have gathered a large amount 
of results about the contribution of the chosen in situ network, inclusion of 14CO2, length of the 
assimilation window, prior uncertainty description, set-up of the control vector, and 
approximation of posterior uncertainty quantification on the posterior uncertainties.  

With the CCFFDAS several design options have been analysed at either global scale or local 
scale. For example, each additional satellite in the CO2M constellation achieves a further 
reduction in posterior uncertainty at country scale in the sectoral fossil fuel emissions. In 
addition, the performance of in situ networks is generally weaker compared to observations 
from CO2M. CO2M provides two more observational data streams: atmospheric aerosol 
information from a Multi-Angular Polarimeter (MAP) and atmospheric NO2 concentrations. 
Better information on the atmospheric aerosol load through the MAP generally improves the 
impact of the CO2M, but over the study region around Berlin the impact of the MAP is 
particularly high in winter. Adding NO2 observations has a strong impact on the emission 
quantification of larger power plants as well as the emissions from the entire city of Berlin. 

The analysis with the Western Europe XCO2-CO2-14CO2 analytical inversion system has 
demonstrated the added value of 14CO2 surface observations in fossil fuel emissions 
estimations especially in cases when the uncertainties in the NEE are large. However, 
accounting for the uncertainties in the NEE as well as accounting for the uncertainties in the 
nuclear 14CO2 emissions impact significantly inversion results. Accounting for the uncertainties 
in the radiocarbon emissions is, on average, much less important than accounting for the 
uncertainties in the NEE, but it can have a significant impact for specific regions. 

For assessing the impact of inversion set-up and assimilated data on posterior uncertainties 
in CH4 emissions the Carbon Tracker Europe – CH4 (CTE-CH4) atmospheric inversion model 
was used with both in situ and TROPOMI observations. The results indicate the potential of 
the TROPOMI data to better separate wetland and anthropogenic emissions, as well as to 
constrain spatial distributions. The length of the assimilation window and prior flux 
uncertainties have a significant impact on the optimised regional fluxes, in particular the 
distribution between biospheric and anthropogenic emissions, and on the seasonality in 
posterior fluxes.  The length of the assimilation window needs to be chosen depending on the 
set-up of the inversion and number of assimilated data on different temporal and spatial 
domains 

Using the LOTOS-EUROS simulation model in forward mode with an ensemble of realistic 
emission inventories only occasionally the specified uncertainty in fossil fuel emissions is able 
to explain the difference between simulations and observations at some of the ICOS sites. 
This suggests that the uncertainties in emissions that are usually assumed in inversion 
systems are higher than what is specified in the current emission uncertainty parameterization 
in the TNO/GHGco v4.0 European emission inventory.  

For a more comprehensive summary of the analysis of the individual results, we forward the 
reader to the individual conclusion sections above (Section 2 for CCFFDAS operated by 
iLab/ULUND, Section 3 for CTE-CH4 operated by FMI, Section 4 for the Western Europe 
analytical inversion system operated by LSCE, and Section 5 for LOTOS-EUROS operated 



CoCO2 2023  
 

D5.5 Impact of System Design on Emission Estimates 
 45 

by TNO). However, as a final note, all presented work highlight the required complexity in the 
design of the modelling systems that link atmospheric tracers to posterior uncertainties in the 
CO2 fossil fuel emissions. Therefore, the results emphasize the importance of quantifying and 
taking into account all aspects of the design options and prior specifications for the CO2 

emissions Monitoring and Verification Support capacity.  
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