
  

Recommendations on anthropogenic CO2 

emission modelling, evaluation, and 

optimization  
A. Lupascu, A. Agustí-Panareda, J. McNorton, M. Choulga, 

G. Balsamo, N. Bousserez,  M. Guevara, H. Denier van der 

Gon, K. Politakos, S. Stagakis, N.Chrysoulakis, T. Kaminski, 

P. Rayner  and M. Scholze 
 

 

 

 

 

 

 

coco2-project.eu 
 



 

 

 

 

 

 

 

 

D3.2 Recommendations on 
anthropogenic CO2 
emission modelling, 
evaluation, and optimization 
 

 

Dissemination Level:  Public 

 

Author(s):    A. Lupascu, A. Agusti-Panareda, J. 
McNorton, M. Choulga, G. Balsamo, N. Bousserez (ECMWF), M. 
Guevara (BSC), H. Denier van der Gon (TNO), K. Politakos, S. 
Stagakis, N. Chrysoulakis (FORTH), T. Kaminski, P. Rayner (iLab) 
and M. Scholze (ULund) 

Date:     13/11/2023 

Version:    1 

Contractual Delivery Date:  31/10/2023 

Work Package/ Task:   WP3/ T3. 2 

Document Owner:   Organisation 

Contributors:               ECMWF, BSC, TNO, FORTH, 
iLab/ULUND 

Status: ￼   Final 

 



 

  

 

CoCO2: Prototype system for a 
Copernicus CO2 service 
Coordination and Support Action (CSA) 
H2020-IBA-SPACE-CHE2-2019 Copernicus evolution – 
Research activities in support of a European operational 
monitoring support capacity for fossil CO2 emissions 
 
Project Coordinator:  Dr Richard Engelen (ECMWF) 
Project Start Date:  01/01/2021 
Project Duration:  36 months 
 
Published by the CoCO2 Consortium 
 
 
Contact:  
ECMWF, Shinfield Park, Reading, RG2 9AX, 
richard.engelen@ecmwf.int 

 

 

 

 

 

 

 

 

 

 

 

 

The CoCO2 project has received funding from the European Union’s 
Horizon 2020 research and innovation programme under grant 
agreement No 958927. 

 

 

 

 

 

  

mailto:richard.engelen@ecmwf.int


CoCO2 2021  
 

D3.2 Recommendations on anthropogenic CO2 emission modelling, evaluation, and optimization 
 4 

Table of Contents 

 

1 Executive Summary ....................................................................................................... 7 

2 Introduction .................................................................................................................... 7 

2.1 Background ........................................................................................................... 7 

2.2 Scope of this deliverable ........................................................................................ 8 

Objectives of this deliverables ........................................................................................ 8 

Work performed in this deliverable ................................................................................. 8 

Deviations and counter measures .................................................................................. 8 

3 Description of CO2 emission modelling components for the global CO2MVS ................ 8 

3.1 Urban modelling and the residential heating sector ............................................... 8 

3.2 Point source emissions ........................................................................................ 11 

4 Evaluation .................................................................................................................... 12 

4.1 Urban temperature and winds from IFS ............................................................... 12 

4.2 Using flux observations to evaluate residential heating emission model .............. 14 

Flux Observations in Heraklion (local scale) ................................................................. 14 

How to use observations in the comparison with modelled fluxes ................................ 16 

Correlation of the in-situ Eddy Covariance measurements with MEHNDI heating 
emissions product ........................................................................................................ 19 

Caveats ....................................................................................................................... 20 

4.3 Impact of residential heating emission model on atmospheric CO2 ......................... 21 

4.4 Plume simulations from power stations ................................................................ 25 

5 Recommendations for further model development and model optimization .................. 36 

5.1 Recommendations for modelling and evaluating emissions ................................. 36 

5.2 Recommendation for optimising emission model parameters .............................. 37 

Developments in IFS .................................................................................................... 37 

Developments in FFDAS .............................................................................................. 38 

6 Conclusion ................................................................................................................... 39 

7 References .................................................................................................................. 40 

8 Supplementary Material ............................................................................................... 45 

 

 

 

 

 

 

 

 



CoCO2 2021  
 

D3.2 Recommendations on anthropogenic CO2 emission modelling, evaluation, and optimization 
 5 

Figures 

Figure 1 The γ factor depends on the annual country budgets, i.e. it is dependent on 
technology/activity/people, etc. and therefore, it is not fixed in time time but updated every 
year from from first soil layer temperature, urban cover and the country-specific CAMS 
annual budget. ............................................................................................................. 10 

Figure 2 Example of residential heating emissions computed with MEHNDI for the city of 
Heraklion (Crete) at midnight 27 Jan 2018. .................................................................. 11 

Figure 3 The 2 m temperature mean bias for the urban IFS (IFS_U, triangles) and control IFS 
(IFS_C, circles) compared with 27 urban SYNOP sites for DJF 2018. The color represents 
the average observed temperature for the city for the specific season. ........................ 13 

Figure 4 The 10 m horizontal mean bias for the urban IFS (IFS_U, triangles) and control IFS 
(IFS_C, circles) compared with 27 urban SYNOP sites for DJF 2018. The color 
differentiates between airport and non-airport sites. ..................................................... 14 

Figure 5 FORTH’s flux towers, as they operate until today, HECKOR (on the left - commercial 
area, Heraklion’s city center) and HECMAS (on the right - residential area). ................ 15 

Figure 6 Local scale CO2 flux (Fc) components within urban areas. .................................... 16 
Figure 7 Land cover map of Heraklion. The blue and yellow contours represent average 

turbulent flux source areas isopleths (1 year) of HECMAS and HECKOR, respectively. 
Each MEHNDI grid box (~1 km2) represents distinct areas. For the current analysis, only 
the purple grid box located within the flux footprint area of HECMAS from the MEHNDI 
dataset was used. ........................................................................................................ 18 

Figure 8 The top plot shows daily mean FC from EC measurements (HECMAS, blue) and CO2 
heating emissions (MEHNDI, orange). The bottom left graph presents monthly means of 
both variables (during the cold months), and the bottom right plot shows a linear 
regression model fit of the monthly aggregated variables. ............................................ 20 

Figure 9 National residential sector emissions of CO2 for 2020 from the CAMS inventory 
(monthly, purple), TEMPO (daily, red) and MEHNDI (daily, green) for nine countries... 22 

Figure 10 Spatial distribution of residential sector emissions from the CAMS inventory for 9 
January 2020 (top). The difference between TEMPO and CAMS emissions for the same 
date (bottom left). The difference between MEHNDI and CAMS emissions for the same 
date (bottom right) ........................................................................................................ 22 

Figure 11 Daily CO2 emissions from the residential sector for 2020 from TEMPO (left-axis, red) 
and MEHNDI (left-axis, green) from France (Top). The daily domestic natural gas 
consumption data for France from GRTgaz (right-axis, purple). Also shown are the 
Pearson correlation coefficients for both emission inventories compared with GRTgaz 
data. The daily domestic natural gas consumption against the IFS first soil layer daily 
urban national average temperature over France for 2020 (Bottom). The line indicates the 
modeled consumption based on a linear function of temperature, a temperature threshold 
of 15.5°C and assuming 80% of consumed gas is for heating. ..................................... 23 

Figure 12 IFS total column CO2 (XCO2) over western USA using the CAMS residential sector 
emissions at 18:00 UTC, 2 February 2020 (top). The difference in XCO2 between the IFS 
using CAMS-TEMPO and the IFS using CAMS emissions for the same time and region 
(bottom left). The difference in XCO2 between the IFS using MEHNDI and the IFS using 
CAMS emissions for the same time and region (bottom right). ..................................... 24 

Figure 13 IFS total column CO2 (XCO2) and TCCON retrievals over six sites for 2020. 
Simulations consist of three different residential emissions (IFS_CAMS—purple, 
IFS_MEHNDI—green and IFS_TEMPO—red) all with the TCCON averaging kernel 
applied. Values given are RMSE and Pearson correlation (r ) compared to TCCON 
retrievals. Note that often IFS_TEMPO values are very close to IFS_CAMS. .............. 25 

Figure 14. Monthly (upper panel) and hourly (lower panel) variation of the CO2 emissions from 
the power sector at Matimba. The CAMS-GLOB-ANTv5.3 emissions are in black, CoCO2 
PS daily emissions are in blue, and CoCO2 hourly emissions are in red. The line in the 
middle of each box is the mean, while the boxes represent the 5th and 95th percentiles.
 .................................................................................................................................... 27 



CoCO2 2021  
 

D3.2 Recommendations on anthropogenic CO2 emission modelling, evaluation, and optimization 
 6 

Figure 15 Average XCO2 for all experiments and difference between simulation using the 
CoCO2 PS emissions and control experiment for 11 July 2021 ................................... 28 

Figure 16 Time variation of predicted surface CO2 (upper panels) and XCO2 (lower panels) 
concentration at the Matimba power station (South Africa). The lines indicate the 
concentration from the use of CAMS-GLOB-ANTv5.3 with the standard diurnal profile 
(black), CoCO2 PS using monthly emissions with the standard diurnal profile (red), 
CoCO2 PS using daily emissions with the standard diurnal profile (blue) on a regular grid 
and CoCO2 PS using hourly emissions with site-specific diurnal profile (green) on the 
Tco399 grid. ................................................................................................................. 30 

Figure 17 Time series of 3-hourly observed (black dots) and modelled XCO2 from the dd_nc 
(green), dd_gr (blue) and hh_gr (red line) for January 2021 ......................................... 32 

Figure 18 Time series of 3-hourly observed (black dots) and modelled CO2 from the dd_nc 
(green), dd_gr (blue) and hh_gr (red line) for January 2021 ......................................... 34 

Figure 19 Schematic of the parameter optimisation method. An ensemble of model simulations 
(m(pi),i=1,..,k)) is used to generate the sample covariance matrix (B) between the 
parameters (p) and the IFS 4D-Var optimised variables (x). The resulting B matrix is then  
used to propagate the 4D-Var increment (dx) to the parameter space, which produces the 
parameter increment (dp). ............................................................................................ 38 

 

 

 

Tables 

 

Table 1 List of experiments performed for 2021 .................................................................. 12 
Table 2 Observed mean and simulation summary statistics for XCO2. The bias, and root 

mean square error (RMSE) are calculated between simulated and observed XCO2 at 
TCCON sites during the 1–31 January 2021 period. .................................................... 33 

Table 3 Observed mean and simulation summary statistics for CO2. The bias, and root mean 
square error (RMSE) are calculated between simulated and observed CO2 at surface-
insitu sites during the 1–31 January 2021 period. ........................................................ 36 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



CoCO2 2021  
 

D3.2 Recommendations on anthropogenic CO2 emission modelling, evaluation, and optimization 
 7 

1 Executive Summary 

The global CO2 Monitoring Verification System (CO2MVS) of the Copernicus CO2 Service will 
use the Integrated Forecasting System (IFS) at ECMWF to estimate global anthropogenic 
emissions of CO2 and CH4. This requires an up-to-date inventory that realistically reproduces 
the CO2 anthropogenic emissions, especially in urban areas, where the local contribution from 
anthropogenic emissions is significant. For this to be modelled it requires a good 
representation of meteorological processes given that meteorological fields can be used as a 
proxy for the spatio-temporal distribution of temperature-dependent anthropogenic emissions. 
Moreover, the spatial representation of large point sources in gridded emission inventories 
was based on outdated plant level information (Wheeler and Ummel, 2008) and might not be 
representative of current representation of active power plants.  

This report describes the progress of these various aspects during the 33 months of the 
CoCO2 project. The main results presented here include 1) the extension of IFS code to 
include the urban canopy model; 2) the use of the best global land cover data set available; 
3) development and testing of a heating degree day (HDD) concept that in the end will produce 
emissions of CO2 online; 4) testing the implementation of the CoCO2 high-resolution global 
emission catalogue of CO2 and co-emitted species (NOx, SO2, CO, CH4) from thermal power 
plants for the year 2018 developed by Guevara et al. (2023) by using these emissions and 
associated temporal profiles within IFS. The work on the urban scheme and residential 
emission model has been published in JAMES (see McNorton et al., 2023). The 
recommendations for modelling and emissions evaluations include 1) the use of a residential 
emission model (MEHNDI) coupled with the IFS urban scheme; 2) extending the monitoring 
network that uses urban eddy covariance flux stations with the final goal of evaluating or 
optimising high-resolution emission models; 3) the use of point source emissions directly on 
the IFS grid. For optimization of emissions model parameters, it was recommended that a set 
of model parameters used by the residential emission model to be optimized with a hybrid 
ensemble-variational inversion system and the use of the Fossil Fuel Data Assimilation 
System (FFDAS) either through online or offline integration.  

 

2 Introduction 

2.1 Background 

In the future European CO2 Monitoring and Verification Support (CO2MVS) capacity, the 
estimation of anthropogenic emissions using atmospheric inversion methods relies on the 
provision of prior information of those emissions as input to the data assimilation system. The 
prior emission data needs to be as accurate as possible, regarding both its highly variable 
spatial and temporal distribution. As the statistics used to estimate the emissions in bottom-
up global/regional inventories are based on the country and annual scales, proxies need to be 
used to disaggregate the emissions in time and space (e.g., population, roads, temperature, 
human settlements, etc.)  

In task 3.2 of the CoCO2 project, the aim has been to integrate the emissions that have a clear 
meteorological forcing and proxy maps that are available within the CO2MVS model. For this 
reason, the main development has focused on residential heating emissions, which are driven 
by temperature and urban cover, using the recently implemented urban scheme and tile in the 
Integrated Forecasting System (McNorton et al., 2021). The approach of heating degree days 
to represent the variability of residential heating emissions is well known and it has been 
implemented in many models. Usually, this involves running a heating degree day model 
offline (e.g., Guevara et al., 2021) with daily mean temperature from re-analyses datasets and 
then using the resulting daily scaling factors as input to regional and global models. In CoCO2 
we have developed an online NWP version of the heating degree day model, which has the 
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great advantage of providing real-time estimates of the emissions to the global CO2MVS. 
Moreover, the integration of the urban cover and urban temperature estimation in the IFS will 
allow the use of high-resolution emissions in the CO2MVS model with as accurate and 
consistent forcing as possible.  

Quantifying the CO2 emissions of large point sources and cities is one of the main goals of the 
CO2MVS (Janssens-Maenhout et al., 2020). For this purpose, a high-resolution global 
emission catalogue of CO2 and co-emitted species (NOx, SO2, CO, CH4) from thermal power 
plants for the year 2018 was developed within the framework of CoCO2 (Guevara et al., 2023). 
We expect the use of this CoCO2 point source emission dataset will improve the 
representation of the spatial and temporal variability of the thermal power stations in the 
Integrated Forecasting System (IFS) and the future global CO2MVS. 

 

2.2 Scope of this deliverable 

Objectives of this deliverable 

This deliverable aims to improve global simulations of CO2 and to integrate the near-real time 
CO2 emissions associated with residential heating as well as an up-to-date power plant 
emissions catalogue within the IFS system. The objectives are focused on 1) using the urban 
scheme to improve the near-real time predicted CO2 residential heating emissions (based on 
the heating degree day concept) together with the resulting atmospheric CO2 at urban sites,  
2) improving the CO2 forecast when using emission information for more than 16000 individual 
facilities defined in the CoCO2 catalogue at their exact geographical location, 3) assess the 
potential of using eddy covariance flux observations to evaluate the residential heating 
emission, and 4) provide recommendations for future developments and operational 
implementation of emission parametrizations in the IFS, as well as the potential to optimise 
the emission model parameters.  

Work performed in this deliverable 

• Development of real-time heating degree day model coupled with the urban scheme 
in the IFS to predict CO2 emissions from the residential heating sector 

• Evaluation of the CO2 residential heating emissions using flux observations  

• Evaluation of the CO2 residential heating emissions using atmospheric observations 

• Use the CoCO2 point source emission dataset for thermal power stations in IFS 
simulations. 

• Provision of recommendations for future global CO2MVS. 

Deviations and counter measures 

N/A 

 

3 Description of CO2 emission modelling components for 
the global CO2MVS 

3.1 Urban modelling and the residential heating sector  

In recent decades, due to urbanization and rapid economic developments, the consumption 
of energy has increased, leading to a large amount of carbon emissions. Even though urban 
environments represent only a small fraction of the global surface, they affect the local climate 
due to their contribution to urban heat islands. Because of their coarse resolution, most of the 
global climate models that are utilized for climate change research do not account for urban 
surfaces (McNorton et al., 2023 and the references herein). The differences between rural and 
urban coverage should be considered, especially since warming effects associated with the 
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urban surfaces combined with GHG warming could be important for predicting the changes in 
mean temperatures. A better understanding of predicted urban temperature is important in 
assessing the energy consumption or heat- and cold-related mortality. As shown in McNorton 
et al., 2023, the atmospheric component of the IFS (Integrated Forecasting System) coupled 
to the land-surface model, ECLand, has been extended to consider the urban tile alongside 
previously considered land-cover tiles (i.e., surface vegetation, bare soil, snow etc).  

As a first step in representing differences between the urban and rural areas in IFS, a single 
layer-urban canopy model (SLUCM) has been incorporated and will be running operationally 
in the IFS cycle CY49R1 (2024). This parameterization has previously been assessed in land-
surface only and single-column versions of the IFS (McNorton et al., 2021). The purpose of a 
SLUCM is to provide improved forecast accuracy (e.g., near-surface air temperature and 
humidity, surface hydrology, energy balance, etc.) for urban environments. A second step was 
to identify the best global land cover data set for urban cover. For this purpose, the results 
coming from simulations that used the ECOCLIMAP-SG (Faroux et al., 2013), The Global 
Human Settlement Layer-S2 (GHSL) (Corbane et al., 2020) and The Copernicus Global Land 
Cover (CGLC) (Buchhorn et al., 2020) dataset were evaluated against a control simulation 
which had no urban representation. The simulations ranged from 2018 to 2021 and they were 
using Tco2556 (∼4 km) horizontal resolution with hourly output.  

Human activities and activities of biosphere react to changing weather, which leads to 
temperature-related variability of both emissions and natural carbon cycle.  Within the IFS, a 
weather-dependent online biogenic flux model has been extensively used to simulate 
atmospheric CO2 concentrations (Agustí-Panareda, McNorton, et al., 2022; Agustí-Panareda 
et al., 2019; Boussetta et al., 2013; McNorton et al., 2020). McNorton et al. (2023), extended 
the heating degree day (HDD) concept, outlined by Quayle and Diaz (1980), which uses 
atmospheric or surface temperature as a proxy variable for the energy demand for heating 
buildings and can be used to generate anthropogenic fluxes. The Modelling Emissions from 
Heating in Near-real-time Driven by the IFS (MEHNDI) system that ultimately generates 
emissions of CO2 online was developed and tested within the IFS. The CO2 emissions used 
in MEHNDI come from in situ fuel burning for space heating. Other forms of space heating 
(e.g., electric) were not included since the emissions are often not collocated with heating 
demands. The main advantages associated with the use of MEHNDI are 1) the improvement 
of spatio-temporal resolution because of producing fluxes at the resolution of the model; and 
2) the availability of near-real-time emissions, which is not the case for inventories based on 
national reporting. The HDD depends on the temperature, therefore, following Spinoni et al. 
(2015) a temperature threshold (Th) of 15.5°C, above which space heating emissions are no 
longer considered, was considered. As a proxy for daily mean 2m temperature (diagnostic 
variable within IFS) that is used to calculate the temperature-dependent coefficient, the model 
soil temperature in the layer (0–7 cm) was used (Tsoil,1). To do so, both diagnostic 2m 
temperature and soil temperature in layer 1 (0–7 cm) were compared with ERA5 daily mean 
2m temperature to determine which variable is most suitable to be used as a varying proxy for 
daily mean 2 m temperature. The equations are shown below: 

 

𝑓(𝑇) = max(15.5 − 𝑇𝑠𝑜𝑖𝑙1, 1)              (1) 

 

𝛾 =
𝐵

∑ ∑ 𝑓𝑢𝑟𝑏,𝑥
𝑥
0

𝑡
0 𝑓(𝑇𝑥,𝑡)

                            (2) 

 

where B represents 80% of the national residential CO2 budget (following Guevara et al., 2021) 
associated with heating emissions (with 20% for non-heating purposes); furb represents the 
urban fraction; and t and x spans all times for a given year and all grid cells within the national 
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domain, respectively. Figure 1 exhibits the heat-depending emissions factor, (). The 

residential sector is then computed with the following equation: 

 

𝐹𝐶𝑂2,𝑥,𝑡 = 𝑓𝑢𝑟𝑏,𝑥𝑓(𝑇𝑥,𝑦)𝛾𝑥            (3) 

 

Equation 3 calculates the residential heating emissions at each model time step (alongside all 
the other meteorological data and online CO2 fluxes) and at the consistent spatial resolution 
of the IFS simulation as it is based on a very high-resolution urban cover used to compute the 
urban fraction furb. Note the model might fail to represent rural hotspots associated with wood 

burning as the  emission factor is nationally constant, which assumes the same method of 

heating is applied nationally regardless of fuel/technology. 

 

 

Figure 1 The γ factor depends on the annual country budgets, i.e. it is dependent on 
technology/activity/people, etc. and therefore, it is not fixed in time time but updated every 

year from from first soil layer temperature, urban cover and the country-specific CAMS annual 
budget. 

The impact of SLUCM on forecasted meteorological variables together with an assessment of 
the impact of MEHNDI on predicted CO2 concentrations will be given in Section 4.  

The implementation of MEHNDI with a flexible design, accommodating different input data on 
different resolutions makes it very flexible regarding the horizontal resolution. As an example, 
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Figure 2 exhibits a snapshot of the residential emission of CO2 emissions computed using 
MEHNDI at a horizontal resolution of 1x1 km for Heraklion, Crete. 

 

 

Figure 2 Example of residential heating emissions computed with MEHNDI for the city of 
Heraklion (Crete) at midnight 27 Jan 2018. 

3.2 Point source emissions  

Within the framework of the Prototype System for a Copernicus CO2 service (CoCO2) EU-
funded project to support the development of the Copernicus CO2 Monitoring and Verification 
Support capacity (CO2MVS) has been developed a high-resolution global emission catalogue 
of CO2 and co-emitted species (NOx, SO2, CO, CH4) from thermal power plants for the year 
2018. Guevara et al (2023) present in detail how the database has been created, following a 
bottom-up approach, which combines plant-specific information with national energy 
consumption statistics and fuel-dependent emission factors and emission ratios. The newly 
created catalogue contains annual emission information for more than 16000 individual 
facilities at their exact geographical location. For each power plant, the catalogue contains a 
specific temporal (i.e., monthly, day-of-the-week and hourly) and vertical distribution profile. 
Furthermore, the annual emissions presented in the CoCO2 catalogue were compared 
against independent plant- and country-level inventories, including the Carbon Monitoring for 
Action (CARMA) and the Emissions Database for Global Atmospheric Research (EDGAR) 
databases, as well as officially reported emission data. It was noted an overall good agreement 
between inventories for CO2 emissions. The main discrepancies are related to the non-
inclusion of auto-producer or heat-only facilities in certain countries due to lack of data. 
However, Guevara et al (2023) indicated that large inconsistencies are obtained when 
comparing emissions from co-emitted species due to uncertainties in the fuel-dependent 
emission ratios and gap-filling procedures. They also advise to consider country-dependent 
temporal profiles when distributing the emissions. 

Four simulations were performed: 1) a control simulation that uses monthly emissions from 
the CAMS-GLOB-ANTv5.3 inventory; 2) a simulation in which the emissions associated with 
the energy sector in CAMS-GLOB-ANTv5. 3 were replaced by monthly CoCO2 emissions for 
each facility as in the CoCO2 catalogue; 3) same as 2) but using daily CoCO2 emissions as 
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derived from the CoCO2 catalogue; 4) same as 2) but using hourly CoCO2 emissions from 
the CoCO2 catalogue (see also Table 1). For experiments 1) - 3), all gridded emissions files 
are at 0.1 x 0.1° resolution, for experiment 4) we are using the Tco399 cubic octahedral 
reduced Gaussian grid.  

 

Table 1 List of experiments performed for 2021 

Simulation Emissions  

inventory 

Emission  

grid type 

Monthly profile Daily profile Diurnal profile 

ctrl CAMS-GLOB-
ANTv5.3 

0.1x0.1°  CAMS-TEMPO  

(Guevara et al., 2021) 

None Default IFS  

(Denier van der Gon et 
al., 2011) 

mn CoCO2 PS 0.1x0.1°  Site-specific CoCO2 PS 
(Guevara et al., 2023) 

None Default IFS 

 (Denier van der Gon 
et al., 2011) 

dd CoCO2 PS 0.1x0.1° Site-specific CoCO2 PS 
(Guevara et al., 2023) 

Site-specific CoCO2 PS 
(Guevara et al., 2023) 

Default IFS 

 (Denier van der Gon 
et al., 2011) 

hr CoCO2 PS Tco399 Site-specific CoCO2 PS 
(Guevara et al., 2023) 

Site-specific CoCO2 PS 
(Guevara et al., 2023) 

CoCO2 PS (Guevara 
et al., 2023) 

 

We also analyse the impact of emissions resolution using daily CoCO2 PS emission on 
0.1x0.1° grid and on the Tco399 cubic octahedral reduced Gaussian grid.  

 

4 Evaluation  

4.1 Urban temperature and winds from IFS  

To assess the model’s skill in simulating observed meteorology when the SLUCM is employed, 
and to find out which land cover leads to best results, the modelled 2m temperature and 10m 
wind speed were evaluated against SYNOPs database (McNorton et al., 2023). Given that the 
majority of the ~6000 sites are in non-urban areas and that urban land cover in the IFS 
represents only 0.3% of total land cover, the impact of SLUCM is not expected to be important, 
yet the use of this scheme overall reduces the RMSE values for the 2 m temperature by ∼0.5% 
and for wind speed by 0.65%–0.94%. 27 urban SYNOP sites were used to evaluate the direct 
contribution of the urban scheme.  

When the SLUCM scheme was employed, the negative bias of 2m temperature seen in the 
IFS control experiment was reduced for all urban SYNOP sites, except Istanbul, Delhi and 
Sydney (see Figure 3).  
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Figure 3 The 2 m temperature mean bias for the urban IFS (IFS_U, triangles) and control IFS 
(IFS_C, circles) compared with 27 urban SYNOP sites for DJF 2018. The color represents the 

average observed temperature for the city for the specific season. 

 

Furthermore, as shown by McNorton et al (2023), the selected urban SYNOP sites were 
divided between the airport and non-airport sites for 10 m wind evaluation (Figure 4). IFS 
urban simulation reduces the wind speed, bringing down the mean bias for all SYNOP sites 
characterized as non-airport from +0.53 ± 1.10 to −0.26 ± 1.33 m s −1. Over airport sites, the 
low bias associated with the IFS control simulations (DJF: −0.21 ± 1.13 m s −1, JJA: −0.28 ± 
1.20 m s −1) was further decreased when SLUCM scheme was employed (DJF: −0.71 ± 1.08 
m s −1, JJA: −0.76 ± 1.18 m s −1). This behaviour can be linked to the poorly represented 
roughness length for momentum since it is used as a simplistic model approach whereby 
urban environments have a fixed road-to-building ratio of 0.5 and building height of 8 m for all 
grid cells. In reality, airport sites should have a much higher road-to-building ratio.  
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Figure 4 The 10 m horizontal mean bias for the urban IFS (IFS_U, triangles) and control IFS 
(IFS_C, circles) compared with 27 urban SYNOP sites for DJF 2018. The color differentiates 

between airport and non-airport sites. 

 

In a nutshell, McNorton et al (2023) showed that the implementation of the urban scheme in 
IFS improved 2 m temperature (∼10%) and 10 m wind (∼17%) RMSE values for both summer 
and winter months around urban environments. The influence of the scheme was most 
noticeable at night. 

 

4.2 Using flux observations to evaluate residential heating emission model 

  Flux Observations in Heraklion (local scale) 

Eddy covariance (EC) is the only direct measurement technique of vertical heat and mass 
transfer (fluxes) between the Earth’s surface and the atmosphere at large spatial scales. EC 
is based on the simultaneous measurement of gas concentrations (or temperature) and 3D 
wind velocities at high frequency (usually 10 or 20 Hz) on tall or medium size towers, 
depending on the morphology of the surface structures. EC has been established as the 
standard measurement technique of surface GHG fluxes over several ecosystem types, such 
as forests, grasslands, or crops, and is used worldwide to monitor ecosystem behaviour and 
responses to climate change and anthropogenic disturbances since a couple of decades.  

Collaborative entities, national organizations, scientific institutes, and universities have 
orchestrated substantial scientific forums and initiatives to amass EC datasets. In Europe, a 
notable example of such efforts is the Integrated Carbon Observation System (ICOS, 
https://www.icos-cp.eu/) and the European Fluxes Database Cluster 
(http://gaia.agraria.unitus.it/). On a global scale, one of the most densely distributed networks, 
encompassing a multitude of these initiatives, is FLUXNET, achieving a truly worldwide reach, 
with measurement sites spanning every continent. FLUXNET is dedicated to the provision of 
EC flux measurements in carbon, water vapour, and energy exchange, thereby contributing 
significantly to our understanding of Earth's ecosystems (https://fluxnet.org/).  

https://www.icos-cp.eu/
http://gaia.agraria.unitus.it/
https://fluxnet.org/
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More recently, the EC method has been applied to urban environments (Aubinet et al., 2012), 
providing a wealth of results for a variety of urban centers with different building types, land 
use, morphology, climate, population distribution, and geographic extent. In this context, 
FORTH operates two ICOS Associated urban flux towers in Heraklion area, Crete 
(https://rslab.gr/fluxtowers.html), so that accurate estimates of the city's emissions can be 
obtained for representative parts of the city. One in a residential area Mastambas (hereinafter: 
HECMAS) and a second one in the city center of Heraklion (hereinafter: HECKOR), Crete, 
established in April 2021 and in November 2016 respectively (Figure 5). Both flux towers are 
equipped with IRGASONs (Integrated CO2/H2O Open-Path Gas Analysers and 3D Sonic 
Anemometers) and net radiometers (online real-time measurements: 
https://rslab.gr/heraklion_eddy.html). These measurements can contribute to the formulation 
of local policy-making to tackle climate change, by keeping the relevant authorities constantly 
informed on the progress of urban emission mitigation. Furthermore, through FORTH's 
research activity, Heraklion is already included in European-scale CO2 emission monitoring 
studies (Nicolini et al., 2022) and also in global research (Lipson et al., 2022). 

In an urban area, the EC measuring instruments are placed above the average building height 
so that the airflow is not obstructed, and the measurements are representative of a large area 
of the underlying urban surface upwind, called flux footprint. Computation of the area of 
footprint within urban spaces may facilitate the recognition of crucial emission sources and 
differentiation between various urban covers with distinct emission properties such as building 
heating, commuting or traffic. The extent of the footprint area can be determined by analytic 
algorithms taking into account the wind direction and speed and the roughness of the urban 
surface (Kljun et al., 2015).  

  

 

Figure 5 FORTH’s flux towers, as they operate until today, HECKOR (on the left - commercial 
area, Heraklion’s city center) and HECMAS (on the right - residential area). 

  

Local urban CO2 flux measurements are affected by different emission sources and sinks. The 
observed flux (Fc) between the urban surface and the atmosphere can be decomposed to the 
main urban flux components as follows (Figure 6): 

 

𝐹𝑐 = 𝐸𝑉 + 𝐸𝐵 + 𝑅𝐻 + 𝑅𝑆 + (𝑅𝑉 − 𝑃𝑉)                        (4) 

https://rslab.gr/fluxtowers.html
https://rslab.gr/heraklion_eddy.html
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Where, EV stands for emissions from cars, EB for emissions from buildings, RH for respiration 
from people and animals, RS for soil respiration, RV for above-ground plant respiration, and PV 
for the uptake of CO2 by plant canopies through photosynthesis. The positive sign indicates 
direction towards the atmosphere (net emissions) and the negative sign towards the surface 
(net uptake) (Ben Crawford et al., 2011; Moriwaki & Kanda, 2004; Stagakis et al., 2019).  

  

 

Figure 6 Local scale CO2 flux (Fc) components within urban areas. 

   

 How to use observations in the comparison with modelled fluxes  

The assessment of the modelled space heating emissions by MEHNDI using the local urban 
EC observations is a challenging task. The following steps are suggested: 

 

4.2.1.1  EC flux processing and quality control 

The first step would be to process the EC datasets and perform a robust quality control and 
gap-filling procedure to obtain reliable and continuous flux time series. This approach entails 
multiple steps that include a thorough examination of all measurements prior to the processing 
phase. To begin, diagnostic flags are assigned by default to each high-frequency 
measurement from both the gas analyser and sonic anemometer, which are used to reject any 
reading of inferior quality. In addition, each measurement is followed by signal strength 
diagnostics, which are used to determine the operational state of the instruments. To improve 
data integrity, the raw dataset is de-spiked and filtered while adhering to preset maximum and 
minimum data thresholds. Moreover, quality flags are produced for every 30-minute interval 
in the flux data, based on the results of both steady-state testing and evaluations of turbulent 
conditions. (Stagakis et al., 2019).  

FC measurements lost by the above procedure are gap-filled using the method introduced by 
Schmutz et al. (2016). A moving LUT (mLUT) technique is implemented that fills FC gaps 
according to wind direction (± 25º), time of day (± 1.5 h) and day (± 4) through an iterative 
process that chooses the temporally closest FC value that meets the wind direction criterion. 
Sundays are treated separately in the mLUT technique due to their unique emission patterns, 
considering only this type of day in the day criterion (± 3 Sundays). After the application of this 
method, the loss of FC measurements in our dataset is drastically reduced. 
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4.2.1.2  EC flux footprint estimation 

The second step would be to model the EC flux footprint and compare it to the model 
resolution. If the extents can be comparable, then the evaluation of the modelled data can 
provide meaningful insights. To achieve this goal, the technique leverages the Flux Footprint 
Parametrization (FFP) model developed by Kljun et al. (2015). The FFP model is a crucial tool 
for assessing the local geographical region which contributes to the observed fluxes. The 
collection of two basic types of information is required for the estimation of a dynamic flux 
footprint. To begin, static data contains a complete Digital Surface Model (DSM) that defines 
the surface characteristics surrounding the flux tower, including building structures and trees. 
Furthermore, the general topography of the surrounding region is described using a digital 
terrain model (DTM). Second, the dynamic component of the data is the collected 
micrometeorology by the EC system. The anisotropic morphology and roughness estimations 
of 400 m radius around each tower are linked with the 30-min meteorological forcing data from 
the EC according to the wind direction. Thus, roughness length (zo) and displacement height 
(zd) are variable according to wind direction in correspondence to the urban morphology. Kljun 
et al. (2015) define the measurement height (zm) as the height above displacement height (zm 
= zreceptor - zd). zo is directly used as an input parameter to FFP. The rest of the FFP inputs are 
the standard deviation of lateral velocity fluctuations, wind direction, friction velocity (u*), 
Obukhov length (L) and planetary boundary layer height (PBLH). Wind attributes, u* and L 
were calculated from the EC measurements for each 30-minute period. PBLH is estimated for 
each 30 m period combining (Zilitinkevich et al., 2012) and (Nieuwstadt, 1981) diagnostic 
formulas for neutral and stable conditions and Batchvarova and Gryning (1991) simplified 
turbulence kinetic energy equation for convective conditions. The Monin-Obukhov stability 
parameter (zm/L) is used for the indication of atmospheric stability regime. More specifically, 
Zilitinkevich et al. (2012) and Nieuwstadt (1981) diagnostic formulas were used to give the 
initial height during night-time stable and neutral conditions and then (Batchvarova & Gryning, 
1991) equation was used to determine the rate of change of PBLH for each 30-min period 
during the convective daytime conditions. 

The computation of flux footprints was done in Heraklion to determine the long-term turbulent 
flux source area, as shown in Figure 7). The 30-minute footprints produced from all valid EC 
measurements made during the course of the research period's 12-month period were 
aggregated. Consequently, the FFP follows wind pattern, regarding Heraklion in an annual 
basis, the predominant wind directions are mostly from the North (N) to the Northwest (NW) 
and from the South (S) to the Southwest (SW).  

The original spatial resolution of MEHNDI covers a much larger area than the measurements 
represented by the flux tower footprint. Consequently, any correlation conducted without 
consideration would yield inaccuracies. To avoid this, ECMWF provided specifically, for 
Heraklion, Greece and Basel, Switzerland, MEHNDI products with downscaled output of 
~1km2 at a daily time-step for the years 2018, 2021 and 2022. 

 

4.2.1.3  Source/sink analysis or attribution 

As described in Section 4.2.1, the urban EC flux measurements are affected by several 
sources and sinks. Quantifying the different components within the measurements (source 
attribution) is challenging. There are some approaches suggested in the literature (e.g. B. 
Crawford & Christen, 2015; Stagakis et al., 2019) but can be very site-dependent and based 
on various assumptions. Overall, there are still no robust methods to quantify the different CO2 
flux components measured by an urban EC station at short time scales (hourly to daily). 

Nevertheless, there are several types of analyses that can help understanding the source/sink 
patterns of each urban EC site and at least qualitatively describe the main flux components 
contributing to the observations. The simplest approach is to group the flux datasets according 
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to wind direction, season, and day of the week (weekday-weekend). Comparison of the daily 
flux patterns between the different groups can provide insights of the main contributing 
components. A more detailed analysis involves the footprint estimations linked to a land 
cover/use map of the site. Such analysis can provide footprint weighted contributions of the 
different land cover types to the measured fluxes (e.g. Stagakis et al., 2019). Different land 
cover types can be associated to various sources or sinks and therefore the method can 
provide quantitative estimations of the contributing flux components. Even though this method 
is promising, it still relies on several assumptions and cannot be very precise. 

Footprint weighting can also be applied to flux model outputs if the model resolution permits 
(e.g. Stagakis et al., 2023). Such approach can help in the comparison between models and 
observations if all contributing components are modelled. If the model resolution is much lower 
than the footprint extent or if not, all flux components are modelled, the comparison would 
involve certain assumptions. 

 

4.2.1.4  Scaling and units 

Models and observations may “talk different language.” One has to make sure that the 
comparisons make sense in terms of the sectoral, spatial, and temporal allocation of the 
modelled fluxes compared to the observations. The unit scales can also be a source of 
discrepancy. EC observations are usually expressed as mass per m2 of footprint area per unit 
of time. Modelled emissions are expressed kg m-2 s-1. Appropriate scaling has to be applied if 
the modelled emissions are not expressed in the same units or in case of quite different 
reference areas (footprint vs grid cell) in terms of land cover type fractions. 

  

Figure 7 Land cover map of Heraklion. The blue and yellow contours represent average 
turbulent flux source areas isopleths (1 year) of HECMAS and HECKOR, respectively. Each 

MEHNDI grid box (~1 km2) represents distinct areas. For the current analysis, only the purple 
grid box located within the flux footprint area of HECMAS from the MEHNDI dataset was used. 
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 Correlation of the in-situ Eddy Covariance measurements with MEHNDI heating 
emissions product 

Among, the four flux tower sites, two in Basel and two in Heraklion, we had to determine which 
areas were most affected by heating emissions throughout a typical year characterized by 
mild summers and cold winters. HECKOR exhibits distinct features, primary business areas 
and major thoroughfares (in an annual basis ~70% of the total FC is derived from traffic 
accumulation (Stagakis et al., 2019)), serving both commercial and commuter purposes 
(Politakos et al., 2023a). The emissions from the flux towers located in Basel, would also not 
be ideal as they both observe fluxes from major roads and commercial/industrial buildings 
(Stagakis et al., 2023). HECMAS is primarily characterized by residential neighborhoods 
featuring high building density and limited, sparse vegetation areas. Small stores and a limited 
number of public facilities, including schools, complement the surrounding neighborhood. The 
annual CO2 fluxes in this region are primarily influenced by heating emissions, particularly 
during the colder months when heating demands are higher. The traffic network is typified by 
intersections with low to moderate traffic activity. The northern, more distant part of the region 
showcases a higher density of low vegetation, including grass and crops (Politakos et al., 
2023). Therefore, in our analysis, we chose only HECMAS station which is affected majorly 
by building heating emissions and only minorly by the rest of the urban sources or sinks. 

Our analysis drew upon observations spanning from December 2021 to April 2022. This period 
aligns with the noticeable decline in temperatures in Heraklion, which commenced in 
December and rose gradually in March, a trend corroborated by HECMAS observations and 
MEHNDI simulations. The MEHNDI grid cell that overlaps with the flux footprint was selected 
for the correlation as shown in Figure 8. MEHNDI heating emissions were normalized by urban 
fractions variables, provided by ECMWF.  

On top of Figure 8, the daily CO2 heating emissions calculated using the MEHNDI grid cell 
model (orange line) over the HECMAS observations (blue line) are presented. Throughout the 
entire year, HECMAS observations reveal a consistent pattern wherein Fc remains 
consistently low during the warm months and rises significantly during the cold months. It is 
worth noting that the MEHNDI calculations align closely with the Heating Degree Days (HDD) 
calculations outlined in Section 4.1. Consequently, a minimum constant value during the warm 
period of the year (June 2021 – November 2021 and April 2022 – May 2022) is observed when 
the daily temperature measurements in Heraklion exceed the HDD lower threshold of 15.5° 
Celsius, as specified by the European Centre for Medium-Range Weather Forecasts 
(ECMWF). Conversely, the EC observations exhibit a distinct weekly pattern during the warm 
months. This weekly pattern is intricately tied to the behaviour of residents and commuters. 
The observations reveal that Saturdays and Sundays exhibit low Fc values, reflecting the 
closure of most stores and public services, resulting in fewer cars on the road. The first peak 
in emissions occurs at the start of the week on Monday, reaching its climax on Wednesdays 
when a flea market is held regularly. Subsequently, emissions decrease towards the end of 
the workweek. 

During the cold period, spanning from December 2021 to the end of March 2022, both 
MEHNDI emissions and EC observations show an increase. For MEHNDI, this signifies that 
the daily HDD values correspond to lower temperatures in Heraklion, consistently below 15.5° 
Celsius threshold. The EC observations reveal a pattern, characterized by localized peaks 
and not a distinct weekly consumption pattern seen earlier in the year. Additionally, the 
consistent behavior of residents throughout the cold period contributes to lower values that 
still exist in the background even if they are not still distinguished due to the higher impact of 
the heating emissions. In summary, it can be inferred that the higher values in observed 
emissions correspond to the heating needs of residents, thereby establishing a stronger 
correlation between HECMAS and MEHNDI. However, it is essential to acknowledge that 
MEHNDI presents lower emissions due to its sectorial approach, focusing solely on heating 
emissions. Conversely, EC observations encompass a broader spectrum, considering the 
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covariance in the local urban atmosphere, including sources and sinks from the footprints, 
including vehicle emissions, respiration, and heating emissions. 

We calculated monthly means for both results and then performed a linear fit correlation 
analysis to catch the impact of these peaks in the model and observations, focusing on the 
cold period. The two bar plots exhibit consistent monthly patterns, succinctly illustrating that 
lower temperatures lead to higher values in MEHNDI heating emissions, which also has a 
direct and immediate impact on the EC observations. Upon conducting a linear fit analysis, 
the results were exceptionally good, with an R-squared value of approximately 96%, and a p-
value of 0.004 indicating a strong and positive correlation.  

 

 

Figure 8 The top plot shows daily mean FC from EC measurements (HECMAS, blue) and CO2 
heating emissions (MEHNDI, orange). The bottom left graph presents monthly means of both 
variables (during the cold months), and the bottom right plot shows a linear regression model 

fit of the monthly aggregated variables. 

  

 Caveats  

Section 4.2, although was not initially from the primary objectives of this deliverable, the 
collaborative efforts between FORTH and ECMWF during CoCO2 project, brought initiatives 
for exploration and progress of the project. Among this process, a few caveats have been 
detected, that could be useful in future versions of the model, beyond the CoCO2 but also of 
broader initiatives (i.e., CORSO). 

Primarily, the process of downscaling a global model into ~1 km2 grid pixels for conducting 
evaluations within the flux footprint area, was a unique process for MEHNDI’s typical outputs. 
As previously mentioned, EC measurements can effectively characterize the exchanges in 
energy and mass within the flux footprint area, but it is challenging to extract forcing data at 
~1km2, in such high-resolution data, particularly when applied to extensive geographic 
regions. This is a limitation that could be achieved and evaluated, particularly through 
initiatives CO2MVS, providing direct observations with greater spatiotemporal resolution.  

Certainly, up to this point, MEHNDI has primarily focused on describing heating emissions; 
this is why correlations were conducted for HECMAS during a specific period, among three 
other flux towers’ observations. To enhance its capabilities, would be advantageous to include 
additional components from Equation 4. For instance, RH, could be calculated utilizing human 
activities and population density grids, which are already available in the literature with 
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increased spatio-temporal resolution. Expanding the analysis in this manner could yield more 
comprehensive results, potentially leveraging networks like FLUXNET or ICOS to conduct 
broader and more extensive evaluations. Moreover, by then MEHNDI could play a pivotal role 
in drawing up strategies and informing policymakers, offers realistic values from a global, 
regional or even a neighbourhood scale. 

 

4.3 Impact of residential heating emission model on atmospheric CO2 

Emissions of CO2 produced by MEHNDI were first evaluated against the existing CAMS 
residential emissions (Granier et al., 2019), which provide monthly grid scale estimates of 
emissions (CAMS), and the CAMS TEMPO-ral profiles (TEMPO), which provide daily 
rescaling based on an offline HDD approach (Guevara et al., 2021).  

There are several differences between TEMPO and MEHNDI. First, TEMPO rescales the 
existing inventory based on the spatial distribution provided by the CAMS inventory whereas 
MEHNDI generates emissions based on the spatial distribution of the urban scheme 
introduced here. Second, TEMPO uses ERA5 daily mean 2m temperature, which is not 
available in real-time, whereas MEHNDI uses the first layer soil temperature, available at 
model resolution, as a proxy for daily mean temperature. Third, TEMPO ensures the annual 
budget is conserved by averaging a scaling factor across all days to 1, which is also not 
possible in near-real-time simulations, whereas MEHNDI scales the emission factor map by 
extrapolating budgets from previous years. This results in slight differences between the 
annual budgets, for example, 2020 annual global CAMS and TEMPO emissions (3.48 Pg CO2) 
are slightly larger than MEHNDI (3.39 Pg CO2). Finally, we have introduced a maximum HDD 
value of 15.5, assuming for temperatures below 0°C residential emissions no longer continue 
to increase from heating. This simple assumption is based on an assumed heating capacity, 
but will either be removed or refined in future developments. These four differences between 
TEMPO and MEHNDI explain the difference in derived emissions from several countries 
shown in Figure 9. The daily variability, driven by temperature changes was apparent in both 
MEHNDI and TEMPO at the national scale, when compared with CAMS. This variability was 
larger for TEMPO, which is expected given daily average of 2 m temperature varies with 
greater magnitude and on timescales slightly shorter than the first soil layer, used by MEHNDI. 
MEHNDI emissions from high-latitude regions were stable over winter months, relative to 
TEMPO, caused by the minimum temperature threshold at which emissions increase being 
set to 0°C. For the temperate regions there was typically a good agreement between MEHNDI 
and TEMPO. The spatial difference in emissions showed changes introduced by using the 
land cover map from the urban scheme, we focused on emissions from Western Europe for a 
given day (9 January 2020) as an example case (Figure 10).  
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Figure 9 National residential sector emissions of CO2 for 2020 from the CAMS inventory 
(monthly, purple), TEMPO (daily, red) and MEHNDI (daily, green) for nine countries. 

 

 

Figure 10 Spatial distribution of residential sector emissions from the CAMS inventory for 9 
January 2020 (top). The difference between TEMPO and CAMS emissions for the same date 

(bottom left). The difference between MEHNDI and CAMS emissions for the same date (bottom 
right) 

The TEMPO and MEHNDI emission estimates for 2020 were compared with daily domestic 
natural gas consumption data for France provided by the natural gas transmission system 
operator, GRTgaz (GRTgaz, 2022). The consumption is measured at all delivery points 
connected to the public distribution network and, it is assumed, should strongly correlate with 
residential CO2 fluxes. Comparisons show good agreement with both TEMPO (R = 0.95) and 
MEHNDI (R = 0.97), suggesting both emission data sets provide an accurate representation 
of the daily variability in residential CO2 emissions at the national scale (Figure 11). Variability 
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between weekdays and weekends was evident in summer months in the gas consumption 
data which is not present in either emission data set. Implementation of societal habits beyond 
temperature comfort would be required to simulate this. Weekly profiles of residential 
emissions, used by the LOTOS-EUROS model (Denier van der Gon et al., 2011), could be 
incorporated into the system as a first step; however, these would only be representative of 
Europe. The temperature threshold, linear increase in gas consumption with decreasing 
temperature and 80% of gas used for heating assumptions are evaluated using the same data 
and show the modelled consumption is accurate (Figure 11). As previously noted, this is a 
reasonable assumption for France and is not ideal for all countries.  

 

 

Figure 11 Daily CO2 emissions from the residential sector for 2020 from TEMPO (left-axis, red) 
and MEHNDI (left-axis, green) from France (Top). The daily domestic natural gas consumption 

data for France from GRTgaz (right-axis, purple). Also shown are the Pearson correlation 
coefficients for both emission inventories compared with GRTgaz data. The daily domestic 

natural gas consumption against the IFS first soil layer daily urban national average 
temperature over France for 2020 (Bottom). The line indicates the modeled consumption based 

on a linear function of temperature, a temperature threshold of 15.5°C and assuming 80% of 
consumed gas is for heating. 
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To evaluate the atmospheric impact of emissions from MEHNDI several sensitivity 
experiments were performed using the CAMS operational system for 2020 (IFS_CAMS, 
IFS_MEHNDI, IFS_TEMPO). The setup mirrored the NWP setup previously described 
including the horizontal resolution (∼9 km), which is higher than the Tco399 (∼25 km) used 
by the operational CAMS forecast (Agustí-Panareda et al., 2019). All non-residential fluxes 
used are taken from the CAMS inventory described by Agusti-́Panareda, Barré, et al. (2022) 

or use the online biogenic flux model described by Boussetta et al. (2013). Atmospheric CO2 
concentration fields were output at 3-hourly intervals and 137 vertical levels. The residential 
sector's contribution to total global CO2 fluxes was small, however for certain times at local 
scales, the impact of using the different emissions was observable in the total column CO2 
concentrations (XCO2) with differences of up to 4 ppm (Figure 12).  

 

 

Figure 12 IFS total column CO2 (XCO2) over western USA using the CAMS residential sector 
emissions at 18:00 UTC, 2 February 2020 (top). The difference in XCO2 between the IFS using 
CAMS-TEMPO and the IFS using CAMS emissions for the same time and region (bottom left). 
The difference in XCO2 between the IFS using MEHNDI and the IFS using CAMS emissions for 

the same time and region (bottom right). 

The Total Column Carbon Observing Network (TCCON) provides XCO2 observations from 
multiple sites with a high accuracy (Wunch et al., 2011). Sounding-specific TCCON averaging 
kernels were applied to model fields for model–observation comparisons as described in 
Massart et al. (2016). We focused on TCCON sites near large urban conurbations, where the 
XCO2 signal is likely to be strongly influenced by local residential sector emissions. The six 
selected sites were Karlsruhe, Germany (Hase et al., 2014), Nicosia, Cyprus (Petri et al., 
2019), Paris, France (Té et al., 2014), Pasadena, USA (Wennberg et al., 2014), Reunion, 
France (De Mazière et al., 2014) and Saga, Japan (Kawakami et al., 2014). As previously 
noted, residential emissions make up only a small fraction of the total anthropogenic 
emissions, and therefore an even smaller fraction of the total CO2 emissions. Therefore, as 
expected, the impact of the different emissions on XCO2 concentrations was small, even close 
to urban hotspots (Figure 13). Despite this, simulations which use daily fluxes provided a more 
accurate representation of XCO2 at all 6 sites. IFS_MEHNDI produces the lowest RMSE at all 
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sites and the highest r value at five out of six sites. A key factor is that the overall budget is 
lower in the MEHNDI inventory, as it is not constrained by the nationally reported figures. This 
reduces the total atmospheric burden, which considering the model XCO2 is typically high 
bisas relative to TCCON, can explain some of the improvement. However, the improvement 
is not as considerable at other background TCCON sites, and the correlation improvement 
does not account for this reduction in bias. This would suggest MEHNDI provides an improved 
spatiotemporal disaggregation of emissions relative to the existing inventory.  

 

 

Figure 13 IFS total column CO2 (XCO2) and TCCON retrievals over six sites for 2020. 
Simulations consist of three different residential emissions (IFS_CAMS—purple, 

IFS_MEHNDI—green and IFS_TEMPO—red) all with the TCCON averaging kernel applied. 
Values given are RMSE and Pearson correlation (r ) compared to TCCON retrievals. Note that 

often IFS_TEMPO values are very close to IFS_CAMS. 

 

4.4 Plume simulations from power stations 

In this section, we investigate the variability in CO2 and XCO2 concentration levels when using 
emissions for the energy sector from the CAMS-GLOB-ANTv5.3 (Soulie et al, 2023) and 
CoCO2 PS (Guevara et al., 2023) inventories. We will also analyse the impact of the CoCO2 
temporal profiles (monthly, daily, hourly) on predicted surface and total column CO2. We focus 
on a case study at the Matimba power station (South Africa) that has been misallocated in the 
EDGARv5 and CAMS-GLOB-ANTv5.3 emission datasets. The total estimated CO2 emissions 
for South Africa from the energy sector are 238.069 and 224.744Tg/yr in the CAMS-GLOB-
ANTv5.3 and CoCO2 PS inventories respectively. This suggests that Matimba was included 
as an important source of CO2 emissions in the CAMS-GLOB-ANTv5.3 but misallocated in the 
grid.  

Figure 14 (upper panel) exhibits the monthly variation of the CO2 emission fluxes associated 
with the power sector at Matimba. We note that the CO2 emissions from CAMS-GLOB-
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ANTv5.3 are within 3 factors of magnitude lower than those coming from the CoCO2 PS 
inventory due to the geographical misallocation in the CAMS-GLOB-ANTv5.3 inventory. 
Moreover, we also note that the monthly emissions differ when using different approaches to 
construct the input emissions files from the CoCO2 PS inventory. As mentioned in Section 
3.2, the hourly emission files are written directly on the Tco399 grid, and not interpolated onto 
the reduced Gaussian grid. The spatial remapping from the regular grid to the reduced 
Gaussian grid uses a box-average interpolation as a proxy for conservative remapping. Due 
to the relatively coarse resolution of the domain (25 km) when compared with the input 
emission data (~10 km), the remapping leads to a smoothed emission distribution (see also 
Fig S1). Therefore, the remapping performed using a nearest-destination-to-source approach 
performed directly on the IFS grid results in a ~28% increase in the emissions fluxes at 
Matimba. 

Figure 14 (bottom panel) illustrates the plant-level emissions flux when combining the 
information on monthly emissions with the fixed hourly temporal profiles per sector and the 
temporal profiles reported in the CoCO2 catalogue. We note that the fixed hourly variation 
profiles clearly differentiate between the night- and daytime and display a morning peak, while 
the reported CoCO2 profile does not show this large variation, and it peaks in the afternoon.  
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Figure 14. Monthly (upper panel) and hourly (lower panel) variation of the CO2 emissions from 
the power sector at Matimba. The CAMS-GLOB-ANTv5.3 emissions are in black, CoCO2 PS 

daily emissions are in blue, and CoCO2 hourly emissions are in red. The line in the middle of 
each box is the mean, while the boxes represent the 5th and 95th percentiles.  

The spatial pattern of XCO2 is presented using 11 July 2021 mean values as an example in 
Figure 15. Concentrations calculated with the CoCO2 PS run are significantly higher than 
those from CAMS-GLOB-ANTv5.3 in the grid cells situated at the border between South Africa 
and Botswana. In addition, the use of the CoCO2 PS emissions leads to an increased XCO2 
concentration at/near the Matimba power station. This is more visible on the plots in the lower 
panel that depict the difference between the various CoCO2 PS simulations and the control 
run. From those plots, it is clear that Matimba is missing in the CAMS-GLOB-ANTv5.3 
emission inventory, and the emissions are relocated elsewhere. This leads to a dipole in the 
difference between CAMS-GLOB-ANT and the CoCO2 PS inventories.  Since the daily and 
diurnal variability is averaged over the whole month, the general spatial pattern in monthly 
concentration is similar. 
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Figure 15 Average XCO2 for all experiments and difference between simulation using the 
CoCO2 PS emissions and control experiment for 11 July 2021 
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The use of CoCO2 PS inventory leads to an increase in predicted surface and total column 
CO2 concentration (Fig. 16) compared to CAMS-GLOB-ANTv5.3, highlighting the 
uncertainties in the gridded emission inventory. The effect of site-specific diurnal profiles has 
no impact on surface concentration, mostly because of the assumption that the emissions are 
equally distributed in the model layers ranging from 200 to 800m. The XCO2 concentration 
has a similar diurnal variation when using monthly and daily CoCO2 emissions, however, we 
note a different behaviour when a site-specific diurnal profile is applied, with a small 
underestimation of XCO2 compared to the simulations that are using the standard diurnal 
profiles. The use of a site-specific diurnal profile has no impact on monthly mean XCO2 in the 
first part of 2021 and tends to predict slightly less XCO2 in the second part of 2021. In the 
following, we examine the impacts on CO2 and XCO2 concentrations of different spatial and 
temporal allocations of the emissions for January 2021. 
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Figure 16 Time variation of predicted surface CO2 (upper panels) and XCO2 (lower panels) 
concentration at the Matimba power station (South Africa). The lines indicate the 

concentration from the use of CAMS-GLOB-ANTv5.3 with the standard diurnal profile (black), 
CoCO2 PS using monthly emissions with the standard diurnal profile (red), CoCO2 PS using 

daily emissions with the standard diurnal profile (blue) on a regular grid and CoCO2 PS using 
hourly emissions with site-specific diurnal profile (green) on the Tco399 grid. 

To disentangle between the combined effect of emissions input files being written directly on 
the IFS grid and the use of different diurnal profiles, we compare against the observations the 
predicted CO2 and XCO2 from simulations for January 2021 that are using 1) daily CoCO2 PS 
emission on 0.1x0.1° grid with standard diurnal profile (further named dd_nc); 2) daily CoCO2 
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emissions on Tco399 cubic octahedral reduced Gaussian grid with standard diurnal profile 
(further named dd_gr) and 3) hourly CoCO2 emissions on Tco399 cubic octahedral reduced 
Gaussian grid with site-specific diurnal profile (further named hh_gr). Due to their remote 
location, the TCCON stations are not strongly affected by the emissions from power plants. 
Yet the model bias (Figure 17 and Table 2) shows, generally, a slight improvement when 
comparing the results from the dd_gr and hh_gr simulations with those from dd_nc, 
highlighting the role of better spatial allocation when we use directly the Tco399 grid. As noted 
by Guevara et al. (2023), the CoCO2 PS catalogue does not include emissions from non-
European auto-producer facilities in several countries due to the lack of information, and the 
countries affected by this limitation are Russia, India and Japan, where the share of national 
emissions that could not be assigned to individual facilities for these countries is between 14% 
and 21%. The CO2 emission budget in Japan is 365.14 and 219.83 Tg/yr in CAMS-GLOB-
ANTv5.3 and CoCO2 PS, respectively, and this might explain why at the Saga and Tsukuba 
sites, the use of CAMS-GLOB-ANTv5.3 leads to higher XCO2 concentrations. Overall, we note 
slight differences between the XCO2 simulations from dd_gr and hh_gr when we allocate the 
emissions on the same grid but using different diurnal profiles. This can be explained by the 
local nature of the emission differences and the rapid mixing in the atmosphere, as noted by 
Lian et al (2021).  
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Figure 17 Time series of 3-hourly observed (black dots) and modelled XCO2 from the dd_nc 
(green), dd_gr (blue) and hh_gr (red line) for January 2021 
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Table 2 Observed mean and simulation summary statistics for XCO2. The bias, 
and root mean square error (RMSE) are calculated between simulated and 
observed XCO2 at TCCON sites during the 1–31 January 2021 period. 

Station Obs 

mean 

 Model 
mean 

  bias   RMSE  

  dd_nc dd_gr hh_gr dd_nc dd_gr hh_gr dd_nc dd_gr hh_gr 

pasadena 416.81 415.67 415.65 415.65 -1.14 -1.16 -1.16 1.56 1.58 1.59 

bremen 414.53 414.91 414.88 414.89 0.38 0.36 0.36 0.38 0.36 0.36 

burgos 415.85 415.47 415.44 415.46 -0.37 -0.41 -0.39 0.56 0.59 0.57 

edwards 414.44 415.04 415.02 415.03 0.6 0.58 0.6 0.75 0.73 0.75 

East 

troutlake 

415.09 415.37 415.36 415.36 0.27 0.26 0.26 0.48 0.47 0.48 

garmisch 414.25 415.27 415.25 415.25 1.02 1 1.01 1.02 1 1.01 

izana 414.18 414.6 414.56 414.58 0.42 0.38 0.4 0.55 0.53 0.55 

lamont 414.96 415.35 415.35 415.37 0.39 0.38 0.41 0.54 0.54 0.55 

orleans 414.51 415.38 415.37 415.37 0.88 0.86 0.86 0.9 0.88 0.88 

parkfalls 415.15 415.64 415.62 415.63 0.49 0.47 0.47 0.76 0.74 0.74 

rikubetsu 416.1 415.78 415.77 415.76 -0.31 -0.32 -0.34 0.51 0.53 0.54 

saga 415.57 416.1 416.01 416.01 0.53 0.43 0.44 0.72 0.65 0.65 

tsukuba 416.1 416.88 416.82 416.82 0.79 0.72 0.72 1.26 1.22 1.23 

wollongong 411.9 411.96 411.93 411.93 0.06 0.03 0.03 0.84 0.83 0.81 

nicosia 415.03 415.54 415.51 415.52 0.51 0.49 0.49 0.79 0.78 0.78 

 

Similarly, the impact of gridded spatial resolution and diurnal profile on predicted surface 
concentration can be seen in Fig 18 and Table 3. We note that different spatial and temporal 
allocation has an impact on surface sites located in the proximity of cities, such as Boston 
University (bu) near Boston, MA, USA, and Egbert (egb) near Toronto, ON, Canada. Although 
the impact is relatively small, we expect it will be much larger when running the IFS model at 
higher resolutions (e.g. operational resolution of 9 km and higher resolution used in DestinE 
project of ~4.5 km). As can be seen in Figure S2, the remapping from the regular grid to 
Tco399 leads to the smoothing of emission fluxes near Egbert, ON, Canada, and to a different 
spatial allocation of the emissions. The atmospheric flow near Egbert has a strong north-
westerly component, thus the site was located upwind of the pollution source, explaining close 
biases between the dd_gr and dd_nc simulations. The temporal profile from the CoCO2 PS 
catalogue is somehow constant throughout the day when compared with the standard 
temporal profile (not shown). Thus hh_gr has larger emissions during the nighttime compared 
with dd_gr. This leads to more CO2 confined at the ground level during the nighttime in 
Toronto, that, after the break-up of the stable nocturnal boundary layer, could be transported 
further downwind, explaining the higher bias calculated at Egbert in hh_gr compared to that in 
dd_gr (Table 3). 
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Figure 18 Time series of 3-hourly observed (black dots) and modelled CO2 from the dd_nc 
(green), dd_gr (blue) and hh_gr (red line) for January 2021 
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Table 3 Observed mean and simulation summary statistics for CO2. The bias, 
and root mean square error (RMSE) are calculated between simulated and 
observed CO2 at surface-insitu sites during the 1–31 January 2021 period. 

station 
Obs 

mean Model mean 
bias rmse 

  
dd_nc dd_gr hh_gr dd_nc dd_gr hh_gr dd_nc dd_gr hh_gr 

bu 437.44 432.48 432.56 432.66 -4.96 -4.88 -4.78 12.09 12.1 11.94 

chl 421.6 421.79 421.79 421.82 0.19 0.19 0.22 1.63 1.63 1.64 

egb 426.56 428 428.01 428.08 1.44 1.45 1.53 4.37 4.41 4.35 

hpb 429.72 424.08 424.06 424.13 -5.64 -5.66 -5.59 8.04 8.08 7.99 

gat 430.77 426.8 426.73 426.69 -3.97 -4.04 -4.08 5.05 5.13 5.15 

hnp 433.62 429.88 429.83 429.94 -3.75 -3.8 -3.68 9.4 9.33 9.4 

htm 428.36 425.39 425.32 425.3 -2.97 -3.04 -3.06 3.86 3.91 3.91 

ipr 437.65 424.24 424.28 424.09 -13.4 -13.37 -13.55 19.9 19.87 19.95 

kre 430.32 426.42 426.39 426.31 -3.9 -3.94 -4.01 5.17 5.26 5.31 

lin 432.38 428.5 428.53 428.48 -3.88 -3.85 -3.9 5.59 5.68 5.59 

ryo 422.81 421.75 421.62 421.61 -1.06 -1.19 -1.2 2.14 2.2 2.2 

sgp 427.51 424.83 424.83 425.01 -2.69 -2.69 -2.51 5.02 5.02 4.89 

yon 422.3 420.6 420.4 420.43 -1.7 -1.9 -1.87 2.69 2.87 2.86 

 

                                                                                                       

5 Recommendations for further model development and 
model optimization 

5.1 Recommendations for modelling and evaluating emissions  

• The use of a residential emission model (MEHNDI) coupled to the IFS urban scheme 
brings-mapping of urban emissions and high temporal variability associated with 
temperature fluctuations. This variability leads to improved variability in XCO2 and it 
also presents new opportunities to run the IFS at higher resolutions than current 
inventories. The recommendation is to implement the MEHNDI model online in the 
IFS. This can be achieved by using the multiscale parameter regionalization system 
(Schweppe et al., 2022) that would facilitate the integration of Gamma factor maps or 
passing this map into the code at the script level. The CAMS-TEMPO (Guevara et al., 
2021) weekly profiles could be also introduced to account for the difference in heating 
preferences during working and non-working days. For the modelling improvements, 
we recommend expanding the linear function of the emission dependency on 
temperature to a non-linear function in order to consider the fact that there is a limit to 
the increase in emissions with temperature. The other aspect that needs to be 
addressed further is the role of rural fuel sources such as biofuels (e.g. wood burners) 
in the residential heating model, which are ignored in the current implementation. 

• Urban EC flux stations are becoming a relevant part of global or regional anthropogenic 
CO2 emission monitoring initiatives. ICOS is currently engaging urban stations as 
associated stations. The ongoing project ICOS-Cities (PAUL:  Pilot Applications in 
Urban Landscapes - Towards integrated city observatories for greenhouse gases, 
https://www.icos-cp.eu/projects/icos-cities) targets to develop urban GHG emission 
observatories, bringing together and evaluating several observation techniques. 
Among them, urban EC towers play a significant role in evaluating high to medium 
resolution emission and inversion modelling. Tall-tower EC can provide extended 

https://www.icos-cp.eu/projects/icos-cities
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footprints and therefore be more easily comparable to models. On the other hand, tall-
tower measurements are more difficult to interpret and quality control due to the highly 
mixed signals and the decoupling of the measurements from the surface fluxes. 
Medium-size EC towers are more common, and the flux processing is already well-
known and standardised (Feigenwinter et al., 2012). There are recent examples of how 
to use medium-size flux towers to evaluate or optimise high resolution emission models 
(Stagakis et al., 2023, Wu et al., 2022). Overall, urban EC flux observations are a 
valuable data source for evaluation or even optimisation of GHG emission modelling 
systems. Appropriate methods and standardization are still needed. However, the field 
is progressing fast and there are several efforts towards this direction, e.g.,  Ameriflux 
(https://ameriflux.lbl.gov),ICOS-ETC  
(https://www.icos-cp.eu/observations/ecosystem/etc), ICOS-Cities (https://www.icos-
cp.eu/projects/icos-cities), World Meteorological Organisation (WMO, 
https://public.wmo.int/en). 

• For the implementation of the point source database into IFS, the recommended 
approach is to process the emissions from the point source database directly to the 
IFS grid. This avoids the need to interpolate the emissions, reducing the smoothing 
effect at the grid scale. It also allows us to easily correct the location of any misplaced 
power stations, which will greatly benefit the monitoring of hotspot emissions in the 
CO2MVS. These two factors (interpolation and allocation of emissions) have been 
found to have the largest impact on CO2 concentrations. Temporal profiles from the 
point source database have been found to have a smaller impact. However, we 
recommend re-assessing the impact of the temporal profiles using higher-resolution 
simulations using high-resolution satellite observations of plumes from TROPOMI and 
OCO2 in 2018 to make use of additional field campaign observations, following D4.1 , 
Krol and van Stratum, 2021).  

 

5.2 Recommendation for optimising emission model parameters 

Process-based models simulate emissions based on parameters that can be calibrated and 
prognostic variables of an Earth System Model (e.g., temperature or humidity). Optimising 
these underlying parameters instead of the flux themselves presents several advantages: a 
more mechanistic approach to define the uncertainty in the emission by propagating the 
parameter uncertainty distribution, and the possibility to improve prognostic capabilities for the 
emissions. 

 

Developments in IFS 

 We have identified a set of model parameters from the residential heating model in the IFS 
that could be optimised using the inversion framework developed in CoCO2 and described 
below. These are: 

1. The Gamma factor in equations 2 and 3. This is currently an annual fixed country-
based map with a prior estimate of annual country budgets obtained from national 
statistics. 

2.  Temperature threshold for heating in equation 1. Currently it is set to 15.5 oC at every 
grid point. This could be improved by estimating the threshold either by latitude or grid-
point to account for changes in thermal tolerance. 

These parameters will be optimised with a hybrid ensemble-variational inversion system,  the 
Bayesian Ensemble Estimation Technique for High-resolution Optimization and Verification of 
Emissions of Nations (BEETHOVEN), which is currently being implemented in the IFS. This 
system will have the capability to optimise parameters of a process-based emission model by 
combining flux increments obtained from the IFS 4D-Var with a sampling estimate of the 
covariance matrix between the model parameters and the emissions. A schematic of the 

file://///Users/cxal/Documents/Reports/Ameriflux
https://ameriflux.lbl.gov/
file://///Users/cxal/Documents/Reports/ICOS-ETC
https://www.icos-cp.eu/observations/ecosystem/etc
https://mercatoroceanfr-my.sharepoint.com/personal/jlamouroux_mercator-ocean_fr/Documents/PROJETS/H2020_CoCO2/ICOS-Cities
https://mercatoroceanfr-my.sharepoint.com/personal/jlamouroux_mercator-ocean_fr/Documents/PROJETS/H2020_CoCO2/World%20Meteorological%20O
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approach is shown in Fig. 19. This method offers great flexibility, since the parameters 
estimation is done in an offline manner (i.e., outside and after each 4D-Var cycle), enabling 
the use of a variety of models in an efficient and non-intrusive way.  

 

Figure 19 Schematic of the parameter optimisation method. An ensemble of model simulations 
(m(pi),i=1,..,k)) is used to generate the sample covariance matrix (B) between the parameters (p) 
and the IFS 4D-Var optimised variables (x). The resulting B matrix is then  used to propagate the 
4D-Var increment (dx) to the parameter space, which produces the parameter increment (dp). 

 

Developments in FFDAS 

The Fossil Fuel Data Assimilation System (Rayner et al., 2010) combines a range of potentially 
diverse data streams with a model of fossil fuel emissions in a variational assimilation 
framework. FFDAS derives a calibrated version of the fossil fuel emissions model and gridded 
emission fields with uncertainty ranges. 

In CoCO2 WP2, the potential of using FFDAS for monitoring anthropogenic emissions has 
been explored. FFDAS provides a fossil fuel emission model for 4 sectors. These sectors are 
electricity generation, residential combustion, road transport, and the complement of these 
three sectors. Further sectors are being added within the CORSO project. To allow efficient 
calibration of the model in a variational assimilation procedure D2.5 further provides tangent 
and adjoint codes. The model can be operated on an arbitrary grid at the global or regional 
scale. For example, one could use finer resolution for specific regions/countries. 

There are two principal ways of integrating the FFDAS into the global CO2MVS, which we 
term offline and online integration. The offline integration would be implemented as a 
preprocessing step that first calibrates the FFDAS against a range of data streams and then 
produces a sectoral fossil fuel emission field that can serve as a prior to an atmospheric 
transport inversion, which has surface emissions as control vector. The online integration 
would couple the fossil fuel emission model and a natural flux model with the atmospheric 
transport component and calibrate the coupled model against a combination of data streams. 
This combination consists of the data streams used for the calibration of FFDAS alone, 
additional data streams that are simulated from the natural flux component and atmospheric 
data streams that show the combined signal from fossil emissions and natural fluxes and thus 
act as a simultaneous constraint on both components. Demonstrations of the online integration 
are provided by Kaminski et al. (2022), CoCO2 (2023) as well as CoCO2 deliverables D6.4 
(Chevalier et al., 2022a), D6.5 (Chevallier et al., 2022b), and D6.6 (Chevallier et al., 2022c) 
on the global scale and by Kaminski et al. (2022a) for the regional domain. A particular 
advantage of the online integration is that it avoids the complexities associated with passing 
(some approximation of) a probability density function in the high-dimensional flux space that 
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constitutes the interface between fossil fuel and transport models which is inherent to the 
offline integration. We thus recommend online integration in an operational system.  

 

6 Conclusion 

In this deliverable, we focus on improving the representation of emissions from power stations 
and the residential heating sector in urban locations which are two of the important emission 
hotspots that the CO2MVS aims to monitor. This section provides a summary of the main 
findings and recommendations from this deliverable, including the potential impact of the 
results on the future CO2MVS:  

• The online simulation of CO2 emissions from residential heating allows the 
representation of very high spatial and temporal resolution of the emissions 
from urban areas. The use of the MEHNDI residential heating model leads to 
an improved temporal variability of emissions, which arises from synoptic scale 
temperature changes. The residential heating emissions from MEHNDI have 
also been used in the CoCO2 nature runs v2. 

• Evaluation of emissions using urban eddy covariance observations is very 
important and future evaluation efforts in CO2MVS should consider more sites. 
In Europe, ICOS observations (https://www.icos-cp.eu/observations/carbon-
portal) are key to the development of a greenhouse emission verification 
capacity. Considering more sites will allow us to better quantify carbon 
emissions and sinks over given areas, and inform societies about the effects of 
climate change mitigation strategies. In addition, the ICOS-Cities project 
(https://www.icos-cp.eu/projects/icos-cities) will contribute to developing and 
linking urban-surface models to better monitor emissions in cities with the 
development of city-scale greenhouse gas observatories. The use of CoCO2 
PS emissions directly on the Gaussian grid leads to a better representation of 
point source emission strength as well as location. It is important not to use 
interpolation to map the point source emissions in order to avoid smoothing 
errors, and this interpolation is inevitable when using gridded inventories 
instead of point source datasets. The impact of interpolation errors at given 
location - even using a mass conserving interpolation scheme - can be of the 
order up to 30% when using the Tco399 grid. However, at Tco1279 (~9 km), 
the error could be up to 110% . 

• The impact of emission changes tends to be very local due to the nature of the 
anthropogenic fossil fuel emissions (e.g., point sources or urban heating). In 
this deliverable, we have performed atmospheric simulations at 25 km 
resolution, and we found the impact of changing the temporal profiles to be 
relatively small. Future work will include higher resolution simulations to 
enhance the emission strength and the resulting atmospheric signal around the 
emission hotpots using case studies with observations from satellites and field 
campaigns. 
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8 Supplementary Material 

 

Figure S 1 January 2021 total CO2 emissions [g/m2] from power plants in South Africa, near 
Matimba from CoCO2 PS inventory remapped from regular grid on the Tco399 grid (left panel) 
and directly on the Tco399 grid (right panel). The black dot represents the location of Matimba. 

 

Figure S 2 January 2021 total CO2 emissions [g/m2] from power plants near Egbert, ON, 
Canada from CoCO2 PS inventory remapped from the regular grid on the Tco399 grid (left 

panel) and directly on the Tco399 grid (right panel). The black dot represents the location of 
Egbert 
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