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1 Executive Summary 

Following the CO2 Human Emissions (CHE) project, and the Observation-based system for 
monitoring and verification of greenhouse gases (VERIFY) project, CoCO2 aims to create a 
prototype of anthropogenic CO2 emission Monitoring and Verification Support (i.e. the 
CO2MVS) systems at global, regional, and local scales. The global modelling and data 
assimilation work package 3 (WP3) of CoCO2 is focused on the development of the CO2MVS 
at global scale, with the European Centre for Medium-range Weather Forecasts (ECMWF) 
Integrated Forecasting System (IFS) at the core, with several planned developments, among 
them the community land-surface modelling for vegetation carbon exchange fluxes based on 
ECLand. In this context, biogenic fluxes play a fundamental role in the carbon cycle with a key 
component centred on the capacity of plants to absorb carbon via photosynthesis, with land 
use and land cover being crucial for its correct representation in the model.  

This deliverable is integrated in Task 3.3 of WP3, aiming to improve global simulations of 
biogenic fluxes and to integrate land-surface remote sensing observations and ancillary data 
related to vegetation carbon exchanges in the IFS prototype. The objectives are focused on 
land-surface mapping and modelling improvements by exploring the role of high-resolution 
land cover change products on biogenic fluxes in the ECLand system, as well as its impact on 
Numerical Weather Prediction (NWP) metrics.  

The work included ECLand offline and online model simulations, data processing, analysis, 
and evaluation. Simulations with the surface modelling platform developed by Météo-France 
(SURFEX) were also performed and analysed. The results not only show model improvements 
but also highlight some of the weaknesses found in the proposed revision of land cover and 
Leaf Area Index (LAI) to ECLand, allowing to identify areas where the model requires 
additional developments. The work was organized in three main components:  

• Data pre-processing of the high-resolution land cover from the European Space 
Agency Climate Change Initiative (ESA-CCI) for 1992-2015 and from the Copernicus 
Climate Change Service (C3S) for 2016-present, as well as the Copernicus Global 
Land Service (CGLS) LAI. 

• Evaluation of the energy, water, and carbon fluxes of ECLand and SURFEX offline 
simulations, using FLUXCOM as reference, and the evaluation of ECLand Land 
Surface Temperature (LST) using satellite data. 

• Assessment of the meteorological impact in the NWP context of the proposed revised 
land cover and LAI. 

In addition to the evaluation of the model developments, the work carried out in this report sets 
the foundations for an integrated NWP and biogenic fluxes assessment of the system, which 
will be used throughout the project and beyond. The technical infrastructure has been 
developed under a version control system and is available on request by any interested project 
partner.  

The surface offline simulations evaluation identified the added value of the revised land cover 
and LAI in term of Gross Primary Production (GPP) when used in conjunction with a model 
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configuration using the Farquhar photosynthesis model (CLM_FvCB). Results also suggest 
that time-varying LAI conditions are relevant to the GPP estimates during large-scale extreme 
events. Limitations in the evaluation of Net Ecosystem Exchange (NEE) and terrestrial 
respiration (TER) arise from model uncertainties in ECLand, SURFEX, and in the reference 
data used (FLUXCOM), suggesting that further developments are required and that flux 
adjustments are paramount to mitigate biases in global CO2 analysis. The evaluation of the 
energy fluxes indicated a very good agreement of surface net radiation between ECLand, 
SURFEX, and FLUXCOM, followed by latent and sensible heat flux.  

The online simulations of weather forecasts for the year of 2019 focused on the evaluation of 
the meteorological impact of the revised land cover and LAI. The results identified a clear 
improvement of 2-metre temperature in Eurasia during spring, while during summer the results 
were mostly negative in the tropics, particularly over North-Eastern Brazil and central-south 
Africa. Similar results were found when considering 1000 hPa geopotential height. The 
geopotential height at 500 hPa indicated an error growth with the revised land cover between 
forecast lead times of 1 to 3 days. A more detailed analysis over the USA, using a high density 
of network of ground stations from the Global Historical Climatology Network (GHCN), 
indicated that the pre-existing bias in the control simulation explains the impact of the revised 
land cover. There is a general increase of temperature in the latter, mostly induced by the 
reduction of surface roughness (due to the reduction of high vegetation) that is positive in 
regions where the control simulation had a negative bias, while negative in regions with 
already a pre-existing warm bias.  

Ongoing developments in ECLand for the next operational IFS cycle include a revision of the 
handling of roughness lengths disaggregation for the tiles and post-processing of 2-metre 
temperature. Preliminary results (not included in the report) indicate a positive impact on LST 
but require further testing with the revised land cover and LAI. Similarly, ongoing tests 
(performed during the preparation of this report) with revised model parameters for TER show 
the potential to improve the global NEE budgets. Therefore, the work in progress will continue 
to provide improvements, with an analysis towards the latest version of the system, being 
proposed to be carried out in a second version of this report, which is expected to take place 
in about one year time (i.e., mid-2023). 

 

2 Introduction 

2.1 Background 

Following the CO2 Human Emissions (CHE) project, and the Observation-based system for 
monitoring and verification of greenhouse gases (VERIFY) project, CoCO2 aims to create a 
prototype anthropogenic CO2 emission Monitoring and Verification Support (i.e., the 
CO2MVS) systems at global, regional, and local scales in the framework of low-carbon 
economy and implemented commitments under the Paris Agreement (Delbeke et al., 2019) 
and the European Green Deal (EU Commission, 2021). This effort will support countries with 
an independent assessment of their emissions and reduction targets. Moreover, the resulting 
information, being consistent and reliable, will provide support to policy- and decision-making 
processes both at national and European level.  

The global modelling and data assimilation work package 3 (WP3) of CoCO2 is focused on 
the development of the CO2MVS at a global scale, building on existing capacity, and will 
deliver a system that can provide information of CO2 emissions and other surface exchanges 
in near-real time, as well as in past reanalysis mode. The European Centre for Medium-range 
Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) is at the core of the 
CO2MVS with planned developments in several areas, such as data assimilation, tracer 
advection, representation of anthropogenic impact on land-surface exchanges, simulations of 
biogenic fluxes, among others.  
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Biogenic fluxes play a fundamental role in the carbon cycle with a key component centred on 
the capacity of plants to absorb carbon via photosynthesis. This process is also crucial for the 
land-surface water and energy cycles. These three cycles, water/energy/carbon, are coupled 
and interact on time-scales ranging from minutes to centuries. Among different aspects of the 
processes involved, Land Use and Land Cover (LULC) is extremely relevant in the estimation 
of biogenic carbon fluxes (Quaife et al., 2008) and their changes are extensively studied in the 
context of climate change. Moreover, the errors found in the models’ representation of LULC 
effects on the lower troposphere have also been shown to limit the progress in weather and 
climate predictability (e.g. Guo et al., 2011; Orth et al., 2016).  

In the current ECMWF land surface model (ECLand) and data assimilation system the 
vegetation cover is derived from the Global Land Cover Characteristics data set (GLCC, 
Loveland et al., 2000) and the Leaf Area Index (LAI) is based on a 2000-2008 climatology 
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5 
(MOD15A2) data and rescaled using a static LAI dataset to guarantee neutral impact on the 
ECMWF model (Boussetta et al., 2013). Therefore, these crucial input datasets do not fully 
benefit from the developments of remote sensing land cover and vegetation data sets during 
the past 20 years. Recent studies have identified limitations of the current land cover and LAI 
datasets used in ECLand (Johannsen et al., 2019), but proposed updates (Nogueira et al., 
2020, 2021a), based on recent remote sensing products, have not been evaluated in terms of 
biogenic fluxes nor in a Numerical Weather Prediction (NWP) context.  

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

This deliverable is integrated in Task 3.3 aiming to improve global simulations of biogenic 
fluxes and to integrate land-surface remote sensing observations and ancillary data related to 
vegetation carbon exchanges in the IFS prototype. The objectives are focused on land-surface 
mapping and modelling improvements by exploring the role of high-resolution land cover 
change products on biogenic fluxes in the ECLand system. The key objectives are: 

• Update the vegetation classification and land cover based on Copernicus products. 

• Updated vegetation description to create quasi-prognostic LAI in IFS, preparing the 
integration of process description with remote-sensing data. 

• Test the impact of high-resolution annual land use description updated in IFS biogenic 
fluxes, and benchmarking against data-driven biogenic CO2 flux products 
(FLUXCOM). 

• Benchmarking with near-surface parameters derived from the operational IFS system, 
scoring specifically on NWP metrics.  

 

2.2.2 Work performed in this deliverable 

This deliverable was produced through the collaboration between all authors from the different 
institutions over the initial course of the project. This included ECLand offline and online model 
simulations, SURFEX simulations, data processing, analysis, evaluation, as well as the writing 
and final review of the current report. The analyses described further on not only show model 
improvements but also highlight some of the weaknesses found in the proposed revision of 
land cover and LAI to ECLand, allowing to identify areas where the model requires additional 
developments. 

The work performed is divided into three sections: 

• Section 3 presents the data pre-processing of the high-resolution land cover from the 
European Space Agency Climate Change Initiative (ESA-CCI) for 1992-2015 and from 
the Copernicus Climate Change Service (C3S) for 2016-present (available from 1992-
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present in the Copernicus Climate Data Store), as well as the Copernicus Global Land 
Service (CGLS) LAI developed for the IFS land cover. 
 

• Section 4 describes the ECLand and SURFEX offline simulations and the impact of 
these on the energy/water and carbon fluxes, as well as on Land Surface Temperature 
(LST). 
 

• Section 5 presents the ECLand online weather forecasts simulations and explores the 
impact of the revised land cover and LAI in the context of NWP metrics. 

 

2.2.3 Deviations and counter measures 

There were no major deviations from the workplan. However, it was identified the need for an 
updated version of this report due to ongoing model developments. Therefore, we propose to 
prepare an updated evaluation of the developed system in terms of biogenic fluxes and 
meteorological impact by mid-2023.  

 

3 Processing of high-resolution land cover and Leaf Area 
Index 

3.1 Data description 

3.1.1 ESA-CCI land cover and Copernicus Global Land Service Leaf Area Index 

The land cover revision for ECLand (i.e., vegetation types and fractional coverage) was based 
on the ESA-CCI dataset. This dataset provides consistent maps of land cover, based on the 
22 classes from the land cover classification system developed by the United Nations Food 
and Agriculture Organization. The latter are derived by combining remotely sensed surface 
reflectance and in situ observations (Defourny et al., 2014). The datasets used for this analysis 
are available at the 300 m spatial resolution, on an annual basis, in which ESA-CCI datasets 
are provided for 1992-2015, while C3S datasets are delivered for 2016–present. 

The LAI was obtained from the CGLS version 2 at the 1 km resolution, covering the entire 
globe. The LAI product is derived from the SPOT-VEGETATION and PROBA-V satellite 
observations using the algorithm described by (Verger et al., 2014). It should be noted that 
this version was discontinued in June 2020, following the end of PROBA-V mission. For an 
operational implementation, the new version of CGLS 300 m based on Sentinel-3 could be 
explored, with a particular attention given to the stability of the LAI from different sensors.  

 

3.2 Data processing  

3.2.1 Land cover 

The land cover data processing included (i) the spatial aggregation from the original 300 m 
and (ii) the transformation of the ESA-CCI land cover classes to the ECLand land cover types. 
The 300 m spatial resolution ESA-CCI land cover grid points are spatially aggregated to the 
target model resolution by counting the number of 300 m pixels of each class occurring within 
each grid-cell of the target grid. This step creates maps of fraction cover for each ESA-CCI 
land cover type at the target grid. These fractional covers of ESA-CCI classes are then 
converted into the ECLand land cover classes using a cross-walking table. The latter identifies, 
for each of ESA-CCI class, the fraction of ECLand land cover type, being based on previous 
works (Nogueira et al., 2020, 2021b; Poulter et al., 2015), despite demonstrating a certain 
degree of uncertainty, particularly over sparse vegetated regions. Finally, the new ECLand 
land cover types fractions are processed to compute the fractional cover of low and high 
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vegetation, as well as the dominant types of low and high vegetation attributed to each grid 
point.  

 

3.2.2 Leaf Area index 

The total LAI data is processed in 3 steps:  

1. A climatology for the period 2010-2019 was computed at the original resolution of 1 km. 
2. The climatology (or the original data) total LAI is aggregated to the target grid and 

disaggregated into low and high vegetation. 
3. The disaggregation of low/high LAI is further processed for consistency with the land 

cover map and to conserve the total LAI.  

For the spatial aggregation and the low/high disaggregation, each 1 km pixel of CGLS LAI 
(laihr) is aggregated to the target grid total LAI (lai), while the low and high LAI (lai_lv, lai_hv) 
are derived considering the low vegetation fraction (cvl), high vegetation fraction (cvh), and 
land sea mask (lsm). The cvl, cvh, and lsm, are derived from aggregating the 300 m ESA-CCI 
land cover to the CGLS 1 km grid, by applying the same cross-walking table (as described in 
the previous section). For a particular target grid-cell, the aggregated lai, lai_lv, and lai_hv, 
consider all the 1 km pixels that fall inside the grid-cell (i.e., i = 1, n pixels, where lsm > 0.5). 
Each 1 km pixel is then assigned to high or low vegetation, depending on cvl and cvh, and 
average weighted on cvl or cvh to derive the low and high vegetation lai:  

 

𝑙𝑎𝑖 =  
1

𝑛
∑ 𝑙𝑎𝑖ℎ𝑟𝑖

𝑛
𝑖=1            (1) 

𝑙𝑎𝑖_𝑙𝑣 =  
1

𝑊
∑ 𝑤𝑖 × 𝑙𝑎𝑖ℎ𝑟𝑖, 𝑊 =  ∑ 𝑤𝑖

𝑛
𝑖=1 ;𝑛

𝑖=1 𝑤𝑖 =  {
𝑐𝑣𝑙𝑖, 𝑐𝑣𝑙𝑖 > 𝑐𝑣ℎ𝑖

0, 𝑐𝑣𝑙𝑖 ≤ 𝑐𝑣ℎ𝑖
     (2) 

𝑙𝑎𝑖_ℎ𝑣 =  
1

𝑊
∑ 𝑤𝑖 × 𝑙𝑎𝑖ℎ𝑟𝑖, 𝑊 =  ∑ 𝑤𝑖

𝑛
𝑖=1 ;𝑛

𝑖=1 𝑤𝑖 =  {
𝑐𝑣ℎ𝑖 , 𝑐𝑣ℎ𝑖 > 𝑐𝑣𝑙𝑖

0, 𝑐𝑣ℎ𝑖 ≤ 𝑐𝑣𝑙𝑖
     (3) 

 

A further processing is applied to reinforce land cover consistency and to guarantee total LAI 
conservation. The low and high vegetation lai for each vegetation type are scaled to guarantee 
consistency in term of annual maximum. For each vegetation type and grid-point, the 
maximum annual LAI is computed, and the median of the distribution is taken as 
representative for that vegetation type lai. A new lai is then computed by scaling the maximum 
lai in each grid-cell by that median value, weighted by the vegetation fraction:  

 

𝑙𝑎𝑖𝑣𝑡𝑦_𝑚𝑎𝑥 = max (𝑙𝑎𝑖𝑣𝑡𝑦)          (4) 

𝑙𝑎𝑖𝑣𝑡𝑦_max _𝑚𝑒𝑑 = median (𝑙𝑎𝑖𝑣𝑡𝑦−𝑚𝑎𝑥)        (5) 

𝛼 = 𝑚𝑖𝑛 (5, 𝑚𝑎𝑥 (0.2,
𝑙𝑎𝑖𝑣𝑡𝑦_𝑚𝑎𝑥 _𝑚𝑒𝑑

𝑙𝑎𝑖_𝑣𝑡𝑦_𝑚𝑎𝑥
))         (6) 

𝑙𝑎𝑖𝑣𝑡𝑦 = (1 − 𝑐𝑣) × 𝛼 × 𝑙𝑎𝑖𝑣𝑡𝑦 + 𝑐𝑣 × 𝑙𝑎𝑖𝑣𝑡𝑦        (7) 

 

Finally, the updated lai_lv and lai_hv for each calendar month is scaled to conserve the total 
LAI with a multiplicative factor 𝛽, limited between 0.2 and 5 to avoid large unrealistic 
corrections: 

 

𝑙𝑎𝑖∗ =
𝑐𝑣𝑙×𝑙𝑎𝑖_𝑙𝑣+𝑐𝑣ℎ×𝑙𝑎𝑖_ℎ𝑣

𝑐𝑣𝑙+𝑐𝑣ℎ
          (8) 
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𝛽 = 𝑚𝑖𝑛 (5, 𝑚𝑎𝑥(0.2,
𝑙𝑎𝑖

𝑙𝑎𝑖∗))          (9) 

𝑙𝑎𝑖_𝑙𝑣 = 𝛽 × 𝑙𝑎𝑖_𝑙𝑣                    (10) 

𝑙𝑎𝑖_ℎ𝑣 = 𝛽 × 𝑙𝑎𝑖_ℎ𝑣                    (11) 

 

3.2.3 Dominant c3/c4 and climate classification 

In addition to the land cover and LAI datasets, two other datasets with the flexibility to adapt 
to any model resolution were also pre-processed, being used as auxiliary data for model 
diagnostics, namely: (i) the Köppen-Geiger climate classification; and (ii) the distribution of C3 
and C4 low vegetation, which are relevant for photosynthesis pathways. The Köppen-Geiger 
climate classification was based on Beck et al. (2018) by performing an interpolation to the 
model grid using the nearest-neighbour approach (see Figure 1). The global distribution of C3 
and C4 herbaceous cover is based on Still et al. (2003) for C3 by default and on the land-use 
harmonization dataset (LUH https://luh.umd.edu/data.shtml, in 2019) for crops using the 
following procedure: 

 

𝐶3𝑆 = 1 − (
𝐶4𝑙

𝐶3𝑙+𝐶4𝑙
) , from (Still et al., 2003),                                      (12) 

𝐶4𝐶 =
𝐶4𝑎𝑛𝑛+𝐶4𝑝𝑒𝑟

𝐶3𝑎𝑛𝑛+𝐶4𝑎𝑛𝑛+𝐶3𝑝𝑒𝑟+𝐶4𝑝𝑒𝑟+𝐶3𝑛𝑓𝑥
 from LUH,                                                            (13) 

 

where C4l and C3l are the C4 and C3 distributions from Still et al. (2003) and C4ann, C4per, C3ann, 
C3per refer to C3 or C4 annual (ann) and perennial crops (per) and C3nfx to nitrogen-fixing crops 
from the land-use harmonization data.  

Since ECLand only considers the dominant low and high vegetation type, a dominant C3/C4 
map is generated based on the previous fields, assuming that C3S is the baseline, being 
replaced by C4C when crops are defined as the dominant low vegetation type. This procedure 
requires as input the land sea mask (lsm), low vegetation cover (cvl), and type of low 
vegetation (tvl). The final C3/C4 map is shown in Figure 2, and is given as: 

 

• 𝑚𝑎𝑝 = 3 𝑖𝑛 𝑎𝑙𝑙 𝑙𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑦 𝑑𝑒𝑓𝑎𝑢𝑙𝑡; 

• 𝑚𝑎𝑝 = 4 𝑖𝑓 𝑐𝑣𝑙 > 0 & 𝑡𝑣𝑙 = 1 & 𝐶4𝐶 > 0.5 (𝑓𝑟𝑜𝑚 𝐿𝑈𝐻); 

• 𝑚𝑎𝑝 = 3 𝑖𝑓 𝑐𝑣𝑙 > 0 & 𝑡𝑣𝑙 = 1 & 𝐶4𝐶 ≤ 0.5 (𝑓𝑟𝑜𝑚 𝐿𝑈𝐻); 

• 𝑚𝑎𝑝 = 3 𝑖𝑓 𝑐𝑣𝑙 > 0 & 𝑡𝑣𝑙 ≠ 1 & 𝐶3𝑆 > 0.5 (𝑓𝑟𝑜𝑚 𝑆𝑡𝑖𝑙𝑙); 

• 𝑚𝑎𝑝 = 3 𝑖𝑓 𝑐𝑣𝑙 > 0 & 𝑡𝑣𝑙 ≠ 1 & 𝐶3𝑆 ≤ 0.5 (𝑓𝑟𝑜𝑚 𝑆𝑡𝑖𝑙𝑙);  

 

 

Figure 1: Dominant Köppen-Geiger climate classification. 

https://luh.umd.edu/data.shtml
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Figure 2: Dominant mapping of the distribution of C3 and C4 for grass and crops plant types. 

 

4 Offline simulations and evaluation of biogenic fluxes  

4.1 Data and methods 

4.1.1 Model simulations  

Offline simulations with the ECLand and Interaction between Soil Biosphere and Atmosphere 
(ISBA) models were carried out driven by near-surface meteorological fields from the ECMWF 
ERA5 reanalysis (Hersbach et al., 2020). Details regarding model configurations are 
presented in the following sub-sections, along with a respective summary in Table 1.  

 

4.1.1.1 SURFEX simulations 

The ISBA land surface model is embedded in the SURFEX modelling platform (Masson et al., 
2013). The latter contains data assimilation routine for land analysis. A python environment 
was built to manage the data flow, from satellite-derived observations to be assimilated to the 
display of open-loop (SF_OL) and analysis simulation (SF_AS) results. The combination of 
these elements is called LDAS-Monde (Albergel et al., 2017). This open-source tool has now 
reached a high technical readiness level and is currently being transferred to operational 
services of Météo-France. The current version of LDAS-Monde is able to assimilate true LAI 
values from the CGLS with or without the joint assimilation of surface soil moisture (SSM) 
products disseminated by CGLS, as well as to be adapted to ingest other sources of data. A 
unique capability of LDAS-Monde is the possibility to analyse the root-zone soil moisture 
(RZSM) at several depths by assimilating LAI and SSM, or both parameters individually. 

In this report, ESA-CCI COMBINED soil moisture v6.1 and CGLS LAI v2 data are assimilated 
into the ISBA model (with the "NIT" option used), while analysis simulation (SF_AS) results 
are obtained in addition to the SF_OL (no assimilation). The original plan was to use the 
updates of SURFEX V9 of the "NCB" option (Gibelin, et al. 2008;  Delire et al., 2020), however 
SURFEX V9 is currently unavailable. The NCB option simulates carbon storage, all respiration 
terms, and spin-up procedures. On the other hand, the "NIT" option has a simple uncalibrated 
parametrization of the terrestrial sink (TER) ( Albergel et al., 2010) based on near-surface soil 
temperature (Q10 function) and soil moisture (linear function). In order to fit TER to Gross 
Primary Production (GPP) we made the assumption that accumulated TER is equal to 70 % 
of the accumulated GPP, as observed over many plant functional types (PFTs) (Wang et al. 
2008; Yuan et al., 2011). This correction is performed only at a post-processing stage, 
therefore not providing any feedback during the model simulation. This is tantamount to tuning 
a TER value over a near-surface soil temperature of 25 °C at field capacity soil moisture 
conditions, grid-cell by grid-cell, in order to rescale TER to GPP. For this analysis, a rescaling 
to TER is applied so that the respective mean values over 2002-2019 can match the 0.7 x 
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GPP mean values over the same period. Simulations using the NCB option will be performed 
at a later stage, including a comparison with the ones made using the NIT option. In ISBA, 
GPP is determined using an uncalibrated A-gs approach (plant parameters are derived from 
the literature or from the TRY database).  

 

4.1.1.2 ECLand simulations 

The land-surface developments are based on the Carbon-Hydrology Tiled ECMWF Scheme 
for Surface Exchanges over Land (CHTESSEL) and form an integral part of the IFS model, 
supporting a wide range of global weather, climate and environmental applications. ECLand 
is a flexible system created to facilitate modular extensions in support of NWP and society-
relevant operational services, for example, Copernicus (Boussetta et al., 2021). The ECLand 
system computes the land surface response to atmospheric forcing, estimating the surface 
energy and water fluxes, as well as the evolution of soil temperature, moisture, and snowpack. 
The surface-atmosphere exchanges take place in a surface skin layer separating the sub-soil 
from the lower troposphere. The skin layer has no heat capacity, and its temperature is used 
to compute the upwelling longwave radiation, making it directly comparable with LST. Each 
grid-box can represent different types of land cover using multiple tiles, including bare ground, 
dominant high vegetation type, dominant low vegetation type, intercepted water (on the 
canopy), and shaded and exposed snow. As an important component of the global carbon 
budget, a land surface CO2 exchange module has been added to ECLand  (Boussetta, 
Balsamo, Beljaars, Agusti-Panareda, et al., 2013), enabling environmental forecasting 
applications, which also involves interaction with atmospheric CO2 concentration. The release 
of land biogenic CO2 and the photosynthesis processes fixing carbon dioxide into biomass are 
parametrized in ECLand, enabling a response to meteorological and climate forcing and to 
the natural biomes distribution, including respective stress conditions (A-gs model). The soil 
respiration is also parametrized in an NWP adapted way as a function of land-use, similarly to 
the scheme used in ISBA. The A-gs model and soil respiration implementations are very 
similar to those in SURFEX, except for some model parameters that were tuned/calibrated 
differently. The photosynthesis and transpiration parametrizations are made modular within 
the land surface scheme, allowing an independent interaction with the atmospheric CO2 
concentrations for global monitoring and prediction purposes (Agusti-Panareda et al., 2014, 
2016). A detailed description of the model can be found on the ECMWF IFS documentation 
(ECMWF, 2021).  

In this analysis three configurations of ECLand with the default A-gs photosynthesis model 
are assessed:  

• CTR: with the current operational model configuration. 

• CLIM: with an updated land cover description, including low and high vegetation cover 
and types, as well as new LAI climatology (see section 3.1.1 for more details).  

• VAR: using the new LULC data as CLIM (section 3.1.1) and considering the original 
data inter-annual variability (IAV). This configuration serves also as a proxy to an 
idealized model configuration with prognostic evolution of LAI.  

In addition to the abovementioned configurations, another two configurations were also 
included following a recent implementation in ECLand of a photosynthesis model based on 
Farquhar et al. (1980) and Collatz et al. (1992), as implemented by Yin and Struik (2009) in 
the organising Carbon and hydrology In Dynamic Ecosystems (ORCHIDEE) land surface 
model (Krinner et al., 2005). Therefore, a control simulation using the default ECLand land 
cover and LAI data (CTR_FVCB) and a simulation with the revised land cover and LAI 
climatology (CLIM_FvCB) were also included in this report. All five ECLand simulations have 
applied the same TER parametrization and the same rescaling as in SURFEX to match 0.7 x 
GPP. Note that the model parameters of A-gs and Farquhar in the ECLand model have been 
optimized with in situ CO2 flux-tower data. Since FLUXCOM also uses flux-tower data for 
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calibration purposes, the ECLand and FLUXCOM GPP products are not completely 
independent.  

 
Table 1: Offline simulations configurations. 

Simulation Setup Details 

CTR ECLand-A-gs control simulation, with default ECLand configuration. 

CLIM ECLand-A-gs with new land cover and new LAI climatology. 

VAR ECLand-A-gs with yearly varying new land cover and LAI. 

CTR_FvCB ECLand-Farquhar control simulation. 

CLIM_FvCB ECLand-Farquhar with new land cover and new LAI climatology. 

SF_OL SURFEX control simulation with open loop. 

SF_AS SURFEX data assimilation, including ESA-CCI SSA and GEOV1 LAI.  

 

4.1.2 Land cover and LAI changes in ECLand 

The revised land cover based on the ESA-CCI products for ECLand includes the update of 
the low and high vegetation types and cover. The current and revised dominant low and high 
vegetation types are shown in Figure 3. The revised high vegetation types do not include the 
types “interrupted forest” and “mixed forest”, which were mostly replaced by deciduous broad 
leaf trees (Figure 3a and Figure 3b). Additionally, the revised low vegetation types do not 
include the “semi-desert” type, which was replaced in most regions by shrubs. Despite these 
changes, the main dominant vegetation patterns remain similar. The largest changes came 
from the vegetation cover, which is shown in Figure 4, in terms of effective vegetation cover. 
In ECLand, the fraction of the vegetated tiles (i.e., effective vegetation) is computed as the 
product of the input vegetation cover by the vegetation density, which is given as a look-up 
table for each vegetation type (see Table 8.1 in Chapter 8 ECMWF (2021)). In the revised 
land cover, there is a general reduction of high vegetation, which is replaced by low vegetation 
and bare-ground. There is also a decrease in the bare ground cover in some semi-arid regions 
(e.g. Rock mountains, East Australia), which is associated with the removal of the “semi-
desert” type, that had a low vegetation density. There are two key differences in the revised 
land cover: (i) the removal of two types of high vegetation, which include “interrupted forest” 
and “mixed forest”; and (ii) the reduction of high vegetation cover, which is compensated by 
an increase of low vegetation.  

The revised LAI based on the CGLS dataset has a higher annual amplitude, when compared 
with the current climatology used in ECLand. This behaviour is exemplified in Figure 5 for two 
regions (East North America and South Africa), where the increased annual amplitude results 
from both a reduction of the annual minimum and increase of annual maximum. The 
disaggregation of total LAI into the low and high vegetation components produces a consistent 
seasonal evolution of the two vegetation components, while guaranteeing the conservation of 
the total LAI given by the satellite data.  
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Figure 3: Dominant high vegetation (a, b) and low vegetation (c, d) in the default (CTR) ECLand 
configuration (a, c) and revised land cover based on ESA-CCI (b, d).  

 

 

Figure 4: Differences between CLIM and control (CTR) simulations effective low vegetation 
cover (a), effective high vegetation cover (b), and effective bare ground cover (c). 
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Figure 5: Mean annual cycle of low vegetation LAI (a, d), high vegetation LAI (b, e), and total 
LAI (c, f), for two regions: (a-c) East North America [30º to 50º N, 90º to 70º W]; (d-f) South 
Africa [20º to 10º S, 12º to 34º E]. These figures compare the ECLand default LAI as in CTR 

(black curves) with the new revised CLIM LAI (solid red lines, v0). The total original LAI (dotted 
magenta in c, f panels), the intermediate LAI aggregation (eq. 7) (red dotted red lines), and an 

independent dataset based on MODIS data (blue lines, v0M) are also included.  

 

4.1.3 FLUXCOM and evaluation metrics 

Surface water, energy, and carbon, fluxes of the offline simulations were compared against 
the FLUXCOM ensemble of global land-atmosphere energy and carbon fluxes (Jung et al., 
2019, 2020). FLUXCOM uses machine learning to merge energy and carbon flux 
measurements from FLUXNET eddy covariance towers with remote sensing and 
meteorological data to estimate several global gridded quantities: net radiation (Rn), latent 
(LE) and sensible (H) heat, GPP, Net Ecosystem Exchange (NEE), and terrestrial ecosystem 
respiration (TER), and their uncertainties. In this analysis the ensemble mean of two 
FLUXCOM products are used: (i) the remote sensing (RS) and (ii) the remote sensing and 
meteorological data (RS_METEO).  

The comparison between simulations and FLUXCOM products followed the International Land 
Model Benchmarking (ILAMB) System protocol (Collier et al., 2018). ILAMB provides a 
comprehensive model assessment based on a set of normalized scores. Errors are 
transformed into normalized score (s) on the unit interval [0,1] by passing the normalized error, 
generically represented here as ϵ, and passing it through the exponential function: 

 

 𝑠 = 𝑒−𝛼𝜖,                                 (14) 

 

where α is a parameter that can be used to tune the mapping of error to score, being set to 1 
in this study. A score of 1 is perfect and it tends to zero as the deviates from the reference 
dataset. The following scores were used:  

• S_bias: bias normalized by the centralized root mean square of the reference data 
(equations 11 to 15 in Collier et al. (2018)); 
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• S_rmse: centralized root mean square error (i.e., removing the mean) normalized by 
the root mean square of the reference data (equations 16 to 19 in Collier et al. (2018)); 

• S_phase: phase shift of the annual cycle considering the timing of the annual maximum 
(equations 21 to 23 in Collier et al. (2018)); 

• S_dist: spatial distribution of the time averaged variable (equations 29 and 30 in Collier 
et al. (2018)); 

• S_all: the overall score for a given variable, computed as the composite of the four 4 
metrics previously defined: 
 

𝑆𝑎𝑙𝑙 =
𝛽𝑏𝑖𝑎𝑠𝑆𝑏𝑖𝑎𝑠+𝛽𝑟𝑚𝑠𝑒𝑆𝑟𝑚𝑠𝑒+𝛽𝑝ℎ𝑎𝑠𝑒𝑆𝑝ℎ𝑎𝑠𝑒+𝛽𝑑𝑖𝑠𝑡𝑆_𝑑𝑖𝑠𝑡

𝛽𝑏𝑖𝑎𝑠+𝛽𝑟𝑚𝑠𝑒+𝛽𝑝ℎ𝑎𝑠𝑒+𝛽𝑑𝑖𝑠𝑡
,                (15) 

 

where the weight 𝛽 for each metric depends on the variable considered, as shown in  

Table 2. The weights were based on a qualitative interpretation of the strengths (seasonality 
and spatial pattern) and weakness (inter-annual variability and absolute mean fields of NEE 
and TER).  

The interannual variability is also presented as a different metric in ILAMB, although it is not 
considered in this report due to limitations of FLUXCOM in representing interannual variability. 
The weight factors presented in  

Table 2 are based on a qualitative interpretation of the strengths and weaknesses of the 
FLUXCOM products, giving more weight to the seasonal cycle phase and spatial distribution, 
while the bias of NEE and TER is not considered.  

 

 

Table 2: Weight factors (𝜷) for each variable used for the calculation of the overall score 
(S_all). 

 Rn LE H GPP NEE TER 

𝜷𝒃𝒊𝒂𝒔 2 1 1 1 0 0 

𝜷𝒓𝒎𝒔𝒆 1 1 1 1 1 1 

𝜷𝒑𝒉𝒂𝒔𝒆 2 2 2 2 2 2 

𝜷𝒅𝒊𝒔𝒕 2 2 2 2 2 2 

 

4.1.4 Satellite land surface temperature 

Estimates of LST from the Satellite Application Facility on Land Surface Analysis (LSA-SAF) 
are available every 15 minutes (between 2004-present) over land pixels within the Meteosat 
Second Generation (MSG) disk. These comprise satellite zenith view angles between 0° and 
80°, with a 3 km resolution at the nadir and are derived from the outgoing Thermal Infrared 
Radiation (TIR) measured at top-of-atmosphere by the Spinning Enhanced Visible and 
InfraRed Imager (SEVIRI) onboard the MSG satellite, employing a generalized “split-window” 
technique (Freitas et al., 2010). The TIR spectral band (8–13 µm) is particularly appropriated, 
since it presents relatively weak atmospheric attenuation under clear sky conditions and 
includes the peak of the Earth's spectral radiance. On the negative side, LSA-SAF LST 
estimates derived from TIR are mostly limited to clear-sky observations, which poses a 
significant limitation to their coverage (Trigo et al., 2011). Despite this limitation, several 
studies have used LSA-SAF LST datasets to evaluate LST of land surface models (e.g 
Johannsen et al., 2019; Nogueira et al., 2021b).  
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4.2 Results 

4.2.1 Surface water/energy/carbon fluxes evaluation 

In the following results, the comparison between the simulations and FLUXCOM is performed 
considering the period between 2002-2015 (14 years) when comparing against the RS 
FLUXCOM product, while the period between 2002-2010 (9 years) is used when comparing 
against the RS_METEO product, following the datasets availability.  

The overall scores S_all for the different simulations and variables are displayed in Figure 6, 
considering both FLUXCOM RS and RS_METEO as reference datasets. Scores are generally 
higher when RS_METEO is taken as reference, however the ranking among variables and 
simulations is similar when considering RS as reference (Figure 6a versus Figure 6b). Net 
radiation has the best scores, followed by LE, H, GPP and TER, with NEE presenting the 
poorest scores. Although all simulations score similarly per variable, there are two points worth 
noting: (i) CLIM_FvCB shows higher scores than the other experiments for LE, H and GPP; 
(ii) SF_AS scores are generally better than SF_OL. The scores for RS taking RS_METEO as 
reference (see grey bar in Figure 6b) can be interpreted as a benchmark score, estimating 
how the differences in the two products propagate into the score. This comparison shows very 
close results to the simulations for Rn and LE, and to some extend GPP and TER, while for 
H, and NEE there is higher agreement between RS and RS_METEO than between the 
different simulations and RS_METEO.  

The contribution of the different metrics S_bias, S_rmse, S_dist, and S_phase, to S_all is 
shown in Figure A1, taking RS_METEO as reference (results of considering RS as reference 
are similar). The S_dist and S_phase metrics, used to assess the spatial pattern of the mean 
field and timing of the annual maximum, respectively, have higher values for all variables, 
indicating a close agreement between the simulations and the reference data. The S_bias and 
S_rmse have lower values, which indicates less agreement, being also associated to larger 
uncertainties in the reference dataset, which was considered in the weights used to compute 
the overall score (see  

Table 2).  

The spatial maps of GPP and the simulations, their differences, and of the metrics  S_bias, 
S_rmse and S_phase are shown in Figure 7 for CTR, while for CLIM_FvCB and for SF_AS 
are shown in Figure 8 and Figure 9, respectively. The results indicate that the tropical regions 
are the most problematic, with a clear improvement in terms of S_rmse in CLIM_FvCB (0.60) 
when compared with CTR (0.48). SF_AS presents the lowest biases (0.64), however some 
discrepancies are found in the annual cycle maximum over the tropical region.  

The distribution of GPP S_bias, S_rmse, and S_phase, for the different simulations (see 
Figure A2) considering the 4 climate regions (see Figure 1), extends the spatial maps 
discussed previously. The results indicate a good agreement between the simulations and 
RS_METEO in terms of the annual cycle maximum in all regions. For S_bias and S_rmse, 
there is a clear difference between Tropical / Arid and Temperate / Cold regions with the latter 
having the highest scores. These results can be partially attributed to the scores calculation, 
since both scores are normalized by the root mean square of the reference data, which is 
higher in the temperate and cold climates, with a marked seasonality, when compared with 
the tropical regions.  
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Figure 6: Overall score S_all for the 6 considered variables (horizontal axis) shown for each 
simulation (bars) considering (a) FLUXCOM RS as reference and (b) FLUXCOM RS_METEO as 

reference. In panel (b) an extra bar was included showing the scores of FLUXCOM RS (grey 
bar) considering RS_METEO as reference. 

 

 

Figure 7: Overview of control (CTR) simulation metrics for Gross Primary Production (GPP) 
using FLUXCOM RS_METEO as reference. (top left) mean FLUXCOM field, (top centre) mean 
CTR field; (top right) mean difference CTR-RS_METEO; (bottom left) S_bias; (bottom centre) 
S_rmse and (bottom right) S_phase. The values between brackets on the title of each map 

indicate the spatial average of the metric. 

 

 

Figure 8: Same as Figure 7 but for the CLIM_FvCB simulation. 
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Figure 9: Same as Figure 7 but for the SF_AS simulation. 

 

The annual global budgets computed only over vegetated areas, for the different variables 
and simulations are shown in Figure 10. Rn shows a variability of about 6 % (86 to 92 W m-2) 
between the different simulations, increasing to 16 % (46 to 54 W m-2) in LE, 32 % in GPP (90 
to 125 Pg C year-1) and TER (65 to 90 Pg C year-1) and 84 % in NEE (-37 to -15 Pg C year-1). 
This inter-model variability of the budgets, which is increasing from the energy budgets to the 
final net carbon budget, reflects the large uncertainties and difficulties in constraining the 
global biogenic carbon budget, justifying flux adjustment to mitigate biases in global CO2 

analysis (Agustí-Panareda et al., 2016). The inter-model variability in TER is very close to 
GPP due to the correction applied to both ECLand and SURFEX simulations to constrain the 
long-term mean of TER to be 70 % of the long-term mean of GPP. Without this constrain the 
inter-model variability would have been much higher in TER and in NEE, and the comparison 
with FLUXCOM products would be significantly affected (not shown). However, this correction 
of TER results is a significant NEE sink in all model simulations, ranging between -37 to 
- 25 Pg C year-1, which is higher than FLUXCOM estimates ranging between -15 to 
- 20 Pg C year-1. It should be noted that FLUXCOM estimates are considered to be very high 
and beyond reasonable estimates given the current knowledge of the global carbon cycle, e.g. 
the land sink of the global carbon budget (Friedlingstein et al., 2022). Therefore, the current 
TER and NEE budgets from the models and FLUXCOM are considered unreliable, demanding 
further alternatives, as discussed at the end  of this section.  

Finally, the summer of 2010 was selected as a case study to investigate the impact of time-
varying land cover and LAI conditions on GPP. This period was exceptionally warm in Eastern 
Europe and large parts of Russia (Barriopedro et al., 2011) with significant 
hydrometeorological and biospheric impacts (Flach et al., 2018). Figure 11 shows the July 
2010 anomaly (in respect to the 2002-2010 mean) for the different simulations. While there is 
a good agreement in terms of the spatial pattern of the anomalies, with a negative/positive 
dipole in Eastern Russia, the amplitude of the anomalies vary significantly. Both FLUXCOM 
products RS and RS_METEO indicate smaller anomalies, followed by CLIM and CLIM_FvCB, 
with SF_AS, SF_OL, and VAR, simulations showing the highest anomalies. The small 
anomalies found in the FLUXCOM product were expected due to its known limitations in terms 
of inter-annual variability (Jung et al., 2020). CLIM and CLIM_FvCB differ from SF_AS, 
SF_OL, and VAR, in several ways, however there is a particularity in the fixed versus varying 
LAI conditions within the former. Although it is not possible to exactly quantify the GPP 
anomaly of this event, these results suggest that varying LAI conditions are relevant to the 
GPP estimates during large-scale extreme events, and that ECLand reproduces SURFEX 
anomalies when driven by time-varying LAI conditions, as it was the case in the VAR 
simulations with prescribed satellite LAI data.  
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Figure 10: Global budgets considering only vegetated regions for (a) Rn, (b) LE, (c) GPP, (d) 
TER, and (e) NEE displayed for all 7 simulations and the two FLUXCOM products. 
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Figure 11: Case study for July 2010 Gross Primary Production (GPP) anomaly in respect to the 
2002-2010 July mean in (a) FLUXCOM RS, (b) FLUXCOM RS_METEO, (c) SF_AS, (d) SF_OL, (e) 

CLIM_FvCB, (f) CLIM, and (g) VAR. The anomaly is computed as July 2010 GPP minus the 
2002-2010 July mean GPP, so that the blue colour indicates a reduction of GPP in 2010 in 

respect to the climatology. 

 

4.2.2 Land Surface Temperature  

The LST of the CTR and CLIM simulations was evaluated against the LSA SAF LST product 
over the period 2004-2019, which is available over the MSG disk considering clear-sky 
conditions. For each month the mean diurnal cycle was computed for LSA SAF and the 
simulations considering: (i) clear-sky conditions from the satellite data; and (ii) ERA5 total 
cloud cover conditions below 0.3 (Johannsen et al., 2019; Nogueira et al., 2021b). After this 
processing, a maximum and minimum daily LST for each month was selected for each grid-
point when there is at least a minimum of 10 % of valid data. Due to this data screening, some 
regions (e.g. tropical forests) are not included in the analysis in the following results (depicted 
by the shaded grey contour within the presented Figures).  

The daily maximum and minimum biases of the CTR simulations for each season is shown in 
Figure 12, along with the differences of the absolute bias between CLIM-CTR simulations. 
The results indicate that daily maximum LST in ECLand displays a large absolute bias over 
most land areas, in all seasons, particularly over Southern Europe, large portions of northern, 
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central and Southern Africa, and Eastern Brazil. In contrast, during JJA the Arabian Peninsula, 
Tropical Western Africa, and Western Brazil, display a warm bias, which is related to aerosols 
affecting both satellite and ERA5 radiation over the Arabian Peninsula and Tropical Western 
Africa. The impact of the revised land cover and LAI in the CLIM simulation (Figure 12) reveals 
mostly neutral impact in all seasons, except for spring in Europe with a marked deterioration. 
Despite this neutral impact, there is a coherent large bias reduction over Southern Africa.  

 

Daily maximum 

 

Daily minimum 

 

Figure 12: Evaluation of Land Surface temperature (LST) daily maximum (left figure) and daily 
minimum (right figure) values, displaying the mean bias of the control simulation (CTR) LST 

for each season, which include (a) DJF, (b) MAM, (c) JJA, and (d) SON, as well as the 
difference of the mean absolute error between CLIM – CTR also for each season (panels from 

b to h). 

 

4.3 Discussion 

In this section offline simulations with ECLand and SURFEX model were evaluated in terms 
of the surface water/energy/carbon fluxes taking FLUXCOM as reference and the LST of 
ECLand was compared with satellite data.  

The results indicate that CLIM_FvCB has higher scores for H and GPP, when compared with 
the remaining simulations, and that SF_AS scores are general higher than SF_OL. The better 
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performance of CLIM_FvCB can be partially attributed to the use of FLUXNET data in the 
optimization of the model as well as to the importance of using improved representation of LAI 
in the modelling of GPP. Lowest scores for the bias and rmse are associated with larger 
uncertainties in the FLUXCOM reference datasets, as well as with lower weights for the overall 
score calculation. A good agreement was found in terms of the annual cycle maximum in all 
climate regions for GPP. For S_bias and S_rmse there is a clear difference between Tropical 
/ Arid and Temperate / Cold regions, with the latter having the highest scores. These results 
can be partially attributed to the scores calculation, since both scores are normalized by the 
root mean square of the reference data, which is higher in the temperate and cold climates, 
with a marked seasonality, when compared with the tropical regions.  

There is a rise of inter-model variability in the annual budgets, increasing from the energy 
components to NEE. This reflects the large uncertainties and difficulties in constraining the 
global biogenic carbon budget, justifying flux adjustment to mitigate biases in global CO2 

analysis (Agustí-Panareda et al., 2016). The TER correction applied to ECLand and SURFEX 
simulations improved the comparison with FLUXCOM. However, this procedure resulted in a 
large NEE sink, compared to estimates from inversions, suggesting the need for further 
exploration of the TER parametrization and a better quantification of the uncertainties related 
to the different budget components (including multi-model/ensemble range). Finally, the 
analysis of the summer 2010 anomalies suggests that: (i) varying LAI conditions are relevant 
to the GPP estimates during large-scale extreme events: and (ii) that ECLand reproduces 
SURFEX anomalies when driven by time-varying LAI conditions, as it was the case in the VAR 
simulations with prescribed satellite LAI data. 

The evaluation of the revised land cover and LAI in ECLand in terms of LST showed mostly 
neutral results, except for spring in Europe with a marked deterioration and a coherent large 
bias reduction over Southern Africa. These results are consistent with the findings of Nogueira 
et al. (2021b) that also suggested that the inclusion of a vegetation clumping parameterization 
based on LAI for low vegetation in addition to the revision of the land cover and LAI was 
beneficial for the LST simulations. However, in the most recent tests in coupled atmosphere 
forecast simulations, such change resulted in a negative impact in atmospheric scores and 
was not included in the presented analysis for this report. Uncertainties in the satellite data 
mapping of both the land cover and LAI might be also a source of error in transition regions 
and areas with sparse high vegetation (e.g. savannah, taiga and crops and small woodlands). 
Moreover, the relation between the satellite land cover and the actual model parameters used 
(e.g. effective vegetation cover) are also a potential source of errors and require further 
attention.  

Ongoing developments in ECLand for the next operational IFS cycle include a revision of the 
handling of roughness lengths disaggregation for the tiles and post-processing of 2-metre 
temperature. Preliminary results (not included in the report) indicate a positive impact on LST, 
however, these findings require further testing with the revised land cover and LAI. Similarly, 
ongoing tests (performed during the preparation of the current report) with revised model 
parameters for TER show the potential to improve the global NEE budgets. The current scaling 
of TER to GPP is problematic as it implies that the sink is proportional to GPP. Adding an 
offset to the TER scaling is an option as well as non-linear relationship with GPP. These will 
be further explored to improve the TER (and NEE) budgets in the second version of this report. 
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5 Online simulations and evaluation of Numerical Weather 
Prediction metrics 

5.1 Data and Methods 

5.1.1 Observations  

A correct characterization of the land surface processes is fundamental for the accurate 
representation of physical and dynamical processes that take place near and above the 
Earth’s surface. In this context, to evaluate the effects and impact of the land cover and LAI 
revision in ECLand towards its meteorological impact in short-range weather forecasts, 
particularly near-surface temperature, model forecasts are assessed against a set of Global 
Historical Climatology Network (GHCN) ground observations. To this end, GHCN daily data is 
extracted from the NOAA online repository1, allowing the access to in-situ records of more 
than 100,000 ground stations globally, with a record length ranging from less than one year to 
more than 175 years (depending on the station). Regarding the available atmospheric 
parameters, in addition to the total precipitation, snowfall, and snow depth, GHCN daily 
records also include maximum and minimum air temperatures values, which are updated daily 
and reprocessed once per week, as part of a quality control procedure. The GHCN records 
have been widely used for model validation (e.g. Mutti et al., 2020; Kumar et al., 2020; Durre 
et al., 2010), covering a variety of locations, vegetation types and climates.  

In this report, to evaluate the weather forecasts against GHCN observations, a nearest 
neighbour mapping of forecast data to the station location was adopted, and data screening 
was applied covering a period of one year (2019), including: i) only stations with more than 
80 % of available data; ii) a minimum of 10 days with valid data; iii) a maximum altitude 
difference of 100 m between station and model altitudes; and iv) only land areas with a 
minimum fraction of 0.9 within each model pixel. As the result of applied filters, a total of 14625 
stations were found suitable for the present analysis (Figure 13), where most of these are 
located within the United States of America (USA), being followed by Europe (EU), Australia 
(AUS), Russia (RUS), Indochina (ICH), India (IND), South America (SA), Central Africa (CAF), 
and South Africa (SAF), as depicted separately in Figure 14. When evaluating the weather 
forecast against GHCN, seasonal mean values for the daily temperature extremes are used 
by averaging the corresponding daily values within each season, being then subjected to an 
analysis where standard NWP metrics (e.g. bias and RMSE) are considered. More details 
concerning the GHCN and provided data are available in Menne et al.(2000). For comparison 
reasons, the seasonal means in the weather forecasts are computed only when there are 
available observations, matching in time, to guarantee a consistent comparison. The 
evaluation metrics are then computed independently for each station, considering the nearest 
model grid-cell, being spatially aggregated to each model grid-cell to partially homogenise the 
stations density.  

 

 
1 https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily 

https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
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Figure 13: Location of each Global Historical Climatology Network (GHCN)-Daily ground 
station (marked by red dots) used for the evaluation of the online simulations with the IFS new 
land cover model. A total of 14625 stations are considered after the application of proper data 

screening. 

 

 

Figure 14: Different domains with respective Global Historical Climatology Network (GHCN)-
Daily ground stations (marked by red dots) used for the evaluation of the online simulations 

with the IFS revised land cover model. These include the United States of America (USA), 
Europe (EU), Australia (AUS), Russia (RUS), Indochina (ICH), India (IND), South America (SA), 

Central Africa (CAF), and South Africa (SAF). 

 

5.1.2 Model simulations 

As previously described in subsection 4.1.1.2, the land cover and LAI was revised for ECLand 
and tested in coupled IFS weather forecasts. For this report two configurations (see Table 3 
were tested: (i) a control configuration (CTR0), which is used as reference for the entire 
evaluation procedure considering the current default configuration of the model, and (ii) a 
configuration using the revised land cover and the LAI climatology (CCI0). It is worth noting 
that several extra configurations of land cover and LAI were also tested but not documented 
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in this report. The simulations consist in a set of medium-range weather forecasts with a 5-
day lead time initialized at 00UTC on all days of 2019. Atmospheric initial conditions were 
taken from ERA5 and land initial conditions from the surface simulations with the same 
configurations, i.e., CTR0 was initialized with land conditions from CTR (see Table 1) and 
CCI0 from land conditions from CLIM (see Table 1).  

Regarding the evaluation of the forecasts to assess the meteorological impact of CCI0, the 
ECMWF software package IVER (Geer, 2015) was used to compute the NWP scores and 
compare CCI0 to CTR0. Specifically, an assessment of several meteorological variables, 
affected by changes made in CCI0, is performed by using the normalised difference in RMSE 
(DRMSE), where blue (negative) areas indicate lower RMSEs (i.e., better scores) in CCI0 in 
comparison with CTR0. The change in the error is normalized by the RMS error of the control 
(CTR0) forecasts, representing the fractional change in the error, for example a value of -0.1 
means a reduction of 10 % of the error in CCI0. This assessment is carried out considering 
different regions of the globe, including: the Southern Hemisphere (SH), between -90º and -
20º; the Tropics, between -20º and 20º; and the Northern Hemisphere (NH), between 20º and 
90º, in which aggregated means for each region are considered. In this evaluation, the 
operational NWP analysis was taken as reference to compute the scores, which for the winter 
season only considers the months of January and February 2019.  

Table 3: Weather forecasts simulations configuration. 

Simulation Setup Details 

CTR0 Control simulation, with default configuration. 

CCI0 Simulation with the revised land cover and LAI climatology. 

 

5.2 Results 

5.2.1 Meteorological impact  

The starting point for this evaluation consists in assessing the regional scores found between 
the CCI0 and CTR0 for the 2-metre air temperature (T2M), as shown by the corresponding 
aggregated means (green lines) in Figure 15. It should be noted that, as previously 
mentioned, different land cover iterations were performed before reaching the current 
configuration. Therefore, regional scores from previous experiments are also shown in the 
results, but not discussed in detail. The black and red lines in Figure 15 to Figure 17 are from 
an initial version of the land cover mapping and cross-walking table with the red line a test of 
changing roughness lengths, while the blue line was from an experiment with active clumping 
for low vegetation (Nogueira et al., 2021b).  

The first noticeable feature in all plots concerns the variability of the forecast error, where 
beyond 72-hour ahead forecasts the variation between CCI0 and CTR0 deviations tends to 
be smoother than within shorter forecasting ranges. It is worth noting that, although the 
forecast variability between 24, 48, and 72-hour ahead forecasts does not show a significant 
change in the differences between the two simulations (the same behaviour is observed 
between the 12, 36, and 60-hour head forecasts), the deviations between the two simulations 
at the 12, 36, and 60-hour ahead forecasts are shown to be smaller (tending to decrease as 
the forecast horizon increases) than at the 24, 48, and 72-hour ahead forecasts. Generally, 
DRMSE regional scores show that CCI0 has better scores (i.e., lower errors) than CTR0 
during the spring period, especially in the NH region (Figure 15f), where CCI0 reduces the 
errors (between 0 and -0.03 approximately), at all lead times. Regarding CCI0 lower scores 
(i.e., higher errors) in comparison to CTR0, these are generally found to be more significant 
in the Tropics, particularly during the summer period (Figure 15h), where CCI0 values are 
predominantly positive (between 0.04 and 0.07, approximately). T2M forecasts from CCI0 also 
show errors during the winter period in all regions (particularly in the Tropics, Figure 15b), 
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where DRMSE are generally positive (between 0 and 0.03, approximately). Although this 
analysis is informative, the use of the operational NWP analysis as reference brings some 
limitations, in particular over regions with a small coverage of observations. In those areas the 
NWP analysis are mostly dominated by the model background, which will tend to benefit the 
CTR0 simulation. In the following section, a more detailed evaluation with the direct use of in-
situ GHCN observations will provide a better insight into the model performance.  

 

Figure 15: Aggregated means for the 2-metre temperature (T2M) normalised RMSE differences 
between CCI0 and CTR0 forecasts (depicted by the green lines) for winter (JF), spring (MAM), 

and summer (JJA) seasons in 2019 with lead times up to 5 days. Regions considered: 
Southern Hemisphere (SH), between -90º and -20º; Tropics, between -20º and 20º; and Northern 
Hemisphere (NH), between 20º and 90º. Confidence range of 95% with AR(1) inflation and Sidak 
correction for 16 independent tests. Additional experimental forecasts from previous versions 
are also depicted (black and red with a previous version of the land-cover mapping, and blue 

with low vegetation clumping). 

Following these results, and to further assess the CCI0 performance in producing skilful near-
surface forecasts, additional analyses towards other meteorological fields are performed 
focusing on the spring and summer periods. Air temperature (T) at different pressure levels 
(1000, 850, and 500 hPa) are also evaluated for the NH and the tropical regions during spring 
and summer periods (Figure 16). In the NH, during spring, high deviations towards air 
temperature at 1000 hPa (Figure 16a) occur between CCI0 and CTR0, where CCI0 errors are 
found to be larger than in CTR0 for shorter forecasting ranges, with values between 0.07 and 
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0.03. Again, these errors near the surface can be partially attributed to the use of the NWP 
analysis. At 850 hPa, CCI0 has an opposed behaviour, with improvements towards CTR0 
(Figure 16b), where values are found between 0 and -0.02, which is also observed at 500 hPa 
although with less significance (Figure 16c). In the Tropics, during the summer, larger air 
temperature errors generally occur in CCI0 (i.e., DRMSE values are predominantly positive). 
At 1000 and 850 hPa (Figure 16d and Figure 16e, respectively), significantly larger deviations 
are found, with a maximum (about 0.08) and minimum (about 0.04) difference respectively 
found between the two simulations, while at 500 hPa (Figure 16f) the deviations closer to 
zero. When looking at the DRMSE for the geopotential height (Z) at 500 hPa (Figure 17), it is 
possible to observe a similar behaviour in the NH during spring and summer (Figure 17b and 
Figure 17d, respectively). In particular, shorter forecasting ranges (i.e., at 12-hour ahead) 
show lower CCI0 errors in spring (about -0.02) than in summer (about 0.01), while a maximum 
error (about 0.03) is found at the 48-hour ahead forecasts in both periods. Regarding the 
tropical region, Z differences are generally lower between the two simulations, although CCI0 
shows higher errors than CTR0 during spring (except at 12-hour ahead), while lower CCI0 
errors tend to be produced during summer (Figure 17a and Figure 17c, respectively). The 
impact on the NH geopotential is likely due to changes in momentum transfer induced by the 
reduction of high vegetation and requires further attention and possible some changes in 
roughness lengths.  

 

 

Figure 16: As Figure 15 but for temperature (T) during spring in the Northern Hemisphere (NH) 
(a-c) and summer in the Tropics (d-f) at different pressure levels: 1000hPa (a, d), 850 hPa (b, e), 

and 500 hPa (c, f).  
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Figure 17: As Figure 15 but for the geopotential height (Z) at 500hPa during spring (a, b) and 
summer (c, d) for the Tropics (a, c) and Northern Hemisphere (NH) (b, d).  

 

In addition to the previous aggregated scores for the NH and Tropics, the following global 
difference maps of DRMSE between CCI0 and CTR0 for the 2-days lead time are discussed 
in more detail. Figure 18 shows the different regions where improved (blue contours) and 
deteriorated (red contours) performances arise in CCI0 in several surface fields. For the T2M 
forecast, CCI0 improvements occur in the NH, particularly during spring over Eastern EU, 
RUS, and USA (Figure 18a), while lower scores are found at higher latitudes, namely in 
Northern USA and Canada, and North-eastern RUS. During the same period, in the Tropics, 
T2M deviations are higher, showing more errors for CCI0 over the SA, CAF, and SAF regions. 
A similar behaviour is observed in the dewpoint temperature (TD2M) forecast (Figure 18c). 
During the summer period, the tropical regions are characterized by an increase of the error 
in both T2M and TD2M (Figure 18b and Figure 18d, respectively). Additionally, the impact of 
CCI0 on the geopotential height at 1000hPa (a proxy for surface pressure) in shown in Figure 
18e and Figure 18f for the spring and summer periods, respectively. Although there is a 
reduction of the errors in CCI0 over most of the NH in spring, there is also a marked 
deterioration in Eastern Brazil and South Africa, being further amplified in summer. These 
results identify a consistent seasonal and geospatial signal with a positive impact of CCI0 in 
the NH in spring and negative in the tropical region, particularly during summer. The negative 
impact in the Eastern Brazil and south-central Africa regions is likely associated with the 
transition of high vegetation cover to low vegetation in those regions and the associated impact 
on surface roughness for momentum and heat. Further investigations are needed to identify 
the root causes and to mitigate it’s impact, as well as data assimilation experiments (which 
are computationally expensive) to exclude possible signals arising from model changes in 
regions with a reduced constrain by the data assimilation system.  
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Figure 18: Normalised Root Mean Square Error (RMSE) differences between CCI0 and CTR0 
forecasts for 2-days lead time forecasts of 2-metre air temperature (T2M a, b), 2-metre 

dewpoint temperature (TD2M, c, d) and geopotential height (Z) at 1000hPa (e, f), for spring 
(MAM, left panels) and summer (JJA, right panels) periods in 2019. No statistical significance 

testing was applied. 

 

5.2.2 Impact on near-surface temperature 

In this section, GHCN ground measurements are used to further evaluate the impact that the 
revised land cover and LAI has over near-surface temperature forecasts. Considering the 
adopted data screening procedure (described in subsection 5.1.1) between the forecast and 
GHCN daily values, seasonal mean values for the daily maximum and minimum temperatures 
(TMAX and TMIN, respectively) are used. It should be noted that although up to 5 days lead-
time forecasts have been analysed in the previous section, only the 2 days lead-time forecasts 
are hereafter used, since TMAX and TMIN forecast errors at different lead times do not change 
significantly (not shown). 

The global bias maps of TMAX and TMIN (Figure 19 and Figure A3, respectively) show that 
the biases in CTR0 are mostly negative for TMAX and positive for TMIN, indicating an under-
estimation of the diurnal cycle range. The differences between CCI0 and CTR0 show that the 
impact of the revised land cover and LAI is stronger in TMAX. These differences (middle 
panels), show mostly positive changes, i.e., CCI0 is warmer, with values over 1.00 K in the 
USA and Eastern EU regions, particularly during the spring period (Figure 19e). This 
behaviour is further noted in the results obtained towards the magnitude change in the bias 
(right panels), where CCI0 improvements (i.e., higher scores) are depicted with blue, while 
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CCI0 higher errors are represented by the red colours. It is worth noting the presence of a 
warm/cold bias effect in the USA region throughout the entire experimental period, where in 
winter (Figure 19a) the forecasts produced by CTR0 depict an overestimation of TMAX 
towards GHCN in Central USA with values between 0.33 and 2.33 K, while a significant 
underestimation is obtained in the western region with values reaching - 3.00 K. In spring 
(Figure 19d), CTR0 shows a high bias underestimation, occurring in Eastern EU and RUS, 
with values going from (close to) null to -3.00 K. Other notable (and frequent) features concern 
CTR0 underestimation towards GHCN in lower sampling regions, such as in CAF, SA, and 
AUS. When evaluating the performance of CCI0 against CTR0, it is possible to observe areas 
where the revised land cover and LAI shows improvements. In particular, when compared with 
GHCN, lower bias deviations are attained in CCI0 than with CTR0 in: most of Eastern EU and 
RUS, especially during spring (Figure 19f), while slightly lower bias deviations are obtained 
in Southern EU during the remaining seasons; Western USA, particularly during winter and 
spring (Figure 19c and Figure 19f, respectively); and in SA throughout the entire year. 
Additionally, for the case of AUS, there is a mixed bias variation during the entire experimental 
period, where in summer there seems to be very small improvements near coastal areas and 
(to some extent) higher errors in the central region of the continent (Figure 19i). Improvements 
are also found with CCI0 in ICH, particularly for the spring and autumn periods (Figure 19f 
and Figure 19l, respectively), which cover the typical monsoon rainfall months of the region. 
Improvements with CCI0 are also obtained in IND for spring, summer, and autumn (Figure 
19f, Figure 19i, and Figure 19l, respectively), which cover the three typical monsoon periods 
occurring in the region. On the other hand, periods of lower performances (i.e., higher errors) 
with CCI0 are also noted, namely in: Central USA throughout the entire year, having less 
significance during summer; SAF during winter (Figure 19c); CAF during summer (Figure 
19i); and over a small area in Eastern EU during autumn (Figure 19l). Regarding TMIN 
differences (Figure A3), as previously mentioned, there is a general bias overestimation in 
CTR0 forecasts towards GHCN throughout the entire year (left panels), with higher values 
being reached in the autumn over the Eastern USA, Eastern EU, SA, SAF, ICH, and AUS 
regions (Figure A3j). The previous noted warm/cold bias effect in the USA region is still 
visible, particularly in winter and spring (Figure A3a and Figure A3b, respectively). In terms 
of CCI0 improvements for TMIN, the magnitude changes in the bias forecasts (right panels) 
show that there are lower deviations between CCI0 and CTR0 than for TMAX. Few noticeable 
features are observed for TMIN forecasts, such as the lower bias error in CCI0 towards GHCN 
than in CTR0 over Eastern EU and RUS during spring (Figure A3f), and Western USA during 
summer (Figure A3i), with values reaching about -1.00 K. In addition to these results, CCI0 
depicts a slightly general increase of the deviations in comparison to CTR0 through the entire 
period of study, particularly in RUS, Eastern USA, SAF, ICH, and Western AUS. 
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Figure 19: Daily maximum temperature (TMAX) for 2 days lead-time forecasts mean bias 
differences: CTR0-CHCN (left panels), CCI0-CTR0 (centre panels) and absolute bias changes 
between CCI0 and CTR0: abs(CCI0-GHCN)-abs(CTR0-GHCN)  (left panels) for winter (JF a, b, 

c), spring (MAM d, e, f), summer (JJA g, h, i), and autumn (SON j, k, l) of 2019.  

 

The previous results are further explored through a series of boxplots showing the differences 
of the RMSE between CCI0 and CTR0, i.e., RMSE(CCI0,GHCN)-RMSE(CTR0,GHCN) for 
TMAX and TMIN (Figure 20 and Figure A4:, respectively). Within each set of boxplots, a 
statistical summary is provided for all data (Global), and separately for the nine different 
regions, where each individual domain is delimited in Figure 14. This includes the respective 
mean and median of the distributions obtained for each region (depicted by a red line and blue 
cross, respectively), while on top of each boxplot is the corresponding median and sampling 
values. It should be noted that due to the spatial heterogeneity of the station’s location, the 
distributions of the metrics over the different regions does not represent a homogeneous 
spatial sampling.  

As expected, for TMAX (Figure 20), there are generally lower errors being produced with CCI0 
than CTR0, as shown by the overall negative values for the Global outputs throughout the 
experimental period, with the highest median score (i.e., the lowest value of about -0.05 K) 
being reached during spring (Figure 20c), where CCI0 has shown to provide best 
performances. The CCI0 performance in producing TMAX forecasts for the remaining seasons 
is characterized by a reduction of the changes from summer (about -0.04 K), winter (about -
0.03 K), to autumn (about - 0.01 K), as shown by Figure 20b, Figure 20a, Figure 20d 
(respectively). In terms of behaviour for the entire experimental period over the different 
regions, RMSE differences show that CCI0 has lower errors than CTR0 in: EU during most of 
the year, especially during summer (about -0.20 K); RUS during spring (about -0.43 K); SA 
during summer (about - 0.47 K) and autumn (about -0.26 K). Lower scores (i.e., higher errors) 
are found with CCI0 in SAF during winter, summer, and autumn (about 0.12, 0.01, and 0.05 K, 
respectively), and CAF during spring (about 0.04 K). Moreover, the effects of the previously 
observed warm/cold bias in the USA region are also shown here through an apparent neutral 
impact, with the distribution being centred around zero in all seasons. Similarly, the errors 
found in AUS also show an overall neutral impact. In comparison to TMAX, the impact of CCI0 
on TMIN tends to be smaller, and mostly neutral. Overall, for TMIN, the lowest errors between 
both simulations are found with CCI0, except in autumn (Figure A4:d), where there is a 
general deterioration (about 0.06 K). For the different regions, during winter (Figure A4:a), 



 35 

there are lower errors in CCI0 than CTR0 for the ICH region (about -0.07 K), with the same 
values being reached in RUS during spring. As opposed to these, CCI0 higher errors for TMIN 
forecasts are generally found during the autumn (Figure A4:d), particularly in USA and SAF 
(about 0.10 and 0.06 K, respectively), as well as in summer (Figure A4:b) in SAF and SA 
(about 0.10 and 0.06 K, respectively).  

 

 

Figure 20: Boxplots for the daily maximum temperature (TMAX) Root Mean Square Error 
(RMSE) differences (in K) between CCI0 and CTR0 forecasts for (a) winter (JF), (c) spring 

(MAM), (b) summer (JJA), and (d) autumn (SON) of 2019. The location of mean and median 
values is depicted inside each boxplot by a blue cross and a red line (respectively), while at 

top a reference is made to the median and sampling values used for each region: all data 
(Global), Europe (EU), Russia (RU), United States of America (USA), South America (SA), 

Central Africa (CAF), South Africa (SAF), India (IND), Indochina (ICH), and Australia (AUS). The 
forecast lead time of 2 days is considered. 

 

A more detailed analysis is also performed towards the new land cover corrections to infer 
possible sources of error linked to the previous warm/cold bias effect (more pronounced for 
TMAX than TMIN) observed over the USA region, which occurs throughout the entire year. 
Scatter density plots of temperature differences between CCI0 and CTR0 bias are produced 
for both TMAX (Figure 21, left panels) and TMIN (Figure A5:, left panels) as function of the 
CTR bias. This allows us to better understand the positive/negative impacts of CCI0 
considering the pre-existing biases in CTR0. Based on this analysis, four general conditions 
(referred here as Q1, Q2, Q3, and Q4) are established to identify the corresponding stations 
that show CCI0 higher and lower bias errors in comparison to CTR0, as shown by the following 
relations:     

 

• Q1: bias CTR0 < 0.1 & |bias CCI0| - |bias CTR0| < 0.1; 

• Q2: bias CTR0 < 0.1 & |bias CCI0| - |bias CTR0| > 0.1; 

• Q3: bias CTR0 > 0.1 & |bias CCI0| - |bias CTR0| > 0.1; 

• Q4: bias CTR0 > 0.1 & |bias CCI0| - |bias CTR0| < 0.1; 
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where the difference between the absolute values of CCI0 bias and the absolute values of 
CTR0 bias represents the magnitude change in the temperature bias. Both Q1 and Q4 report 
stations where CCI0 performs better than CTR0 (i.e., lower errors), while the opposed 
behaviour is shown in Q2 and Q3 conditions. The corresponding stations are then depicted in 
regional maps of the USA region according to each performance condition for TMAX (Figure 
21, right panels) and TMIN (Figure A5:, right panels). Additionally, since there is a higher 
impact of the new model corrections over TMAX forecasts than for TMIN, a summary 
regarding the number of stations found within each condition is presented for TMAX in Table 
4.  

Considering the previous adopted conditions, for TMAX forecasts it is possible to notice that 
in the USA region CCI0 generally has better performances than CTR0 during spring. In 
particular, for this period, a total of 1821 stations (Figure 21d), i.e., the sum of stations found 
within conditions Q1 and Q4 (Table 4), show that improvements are mostly located in the 
eastern and western regions, corresponding to more than half of the available stations during 
this season. At the same time, despite a lower number of stations showing higher errors in 
CCI0 (i.e. a total of 1349, considering the sum of stations found within conditions Q2 and Q3), 
the revised land cover bias seems to increase more in the central region of the country. This 
behaviour is similarly observed in the remaining seasons, being more significant during the 
autumn period (Figure 21h). Regarding the obtained results for TMIN (Figure A5), there is 
no clear signal between the pre-existing biases in CTR0 and the magnitude change in the 
temperature bias between CCI0 and CTR0. There is an overall improvement with CCI0 for the 
USA region, particularly during the summer period (Figure A5:f), while CCI0 higher errors are 
found in the autumn period (Figure A5:h). Despite achieving an overall improvement towards 
the representation of near-surface temperature with CCI0, these results show that there are 
still locations with systematic errors that the revised land cover is not able to resolve. The 
relation that such errors can have with the different land cover components was also explored 
through additional analysis (not shown). In particular, a comparison analysis towards the use 
of different ranges of vegetation coverage parameters (e.g. total LAI, total vegetation, types of 
vegetation, etc.) and the impact of these in the resulting temperature forecasts between CCI0 
and CTR0, revealed that there is no clear relation between the warm/cold bias effect and the 
vegetation parameters selected for testing. 

Table 4: Summary for the number of samples (#) found within each performance condition (Q1, 
Q2, Q3, and Q4) for the IFS land cover model defined between control and revised simulations 

of TMAX, including the respective percentage in reference to the total sampling (i.e., total 
number of stations found in the USA region) for each season in 2019. 

 

 

 

  Q1 Q2 Q3 Q4 

JF 
Samples (#) 982 529 941 696 

Total (%) 31.19 16.80 29.89 22.11 

MAM 
Samples (#) 1520 545 804 301 

Total (%) 47.95 17.19 25.36 9.50 

JJA 
Samples (#) 909 1094 303 838 

Total (%) 28.91 34.80 9.64 26.65 

SON 
Samples (#) 1307 389 1116 324 

Total (%) 41.68 12.40 35.59 10.33 
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Figure 21: (left panels) scatter plots for the daily maximum temperature (TMAX) bias 
magnitude change between CCI0-CTR0 (vertical axis) as function of the CTR0 bias (horizontal 
axis); (right panels) regional maps (USA) for TMAX bias differences between CCI0 and CTR0. 
Results are displayed for winter (JF a, b), spring (MAM c, d), summer (JJA e, f), and autumn 

(SON g, h) of 2019, with the forecast lead of 2 days. All units are in K. 

 

5.3 Discussion 

The meteorological impact of CCI0 in comparison with CTR0 in terms of NWP forecast scores 
was assessed using the ECMWF IVER tool, while a more detailed analysis focusing on daily 
maximum and minimum 2-metre air temperature was performed with in situ observations from 
GHCN as reference. The T2M results were mostly coherent, showing a clear improvement in 
CCI0 in Eurasia during spring with higher errors found in the Tropics, particularly during 
summer. Specifically, temperature improvements (i.e., with lower errors), including TD2M, air 
temperature up to 500 hPa, are essentially obtained in the NH, namely in USA, EU, and RUS. 
Despite these improvements, systematic errors in temperature forecasts persist throughout 
the entire experimental period of 2019 (at very high latitudes), having a significant increase 
during the summer over tropical regions. The main areas that experience a negative impact 
in CCI0 are in: SA (particularly North-eastern Brazil) during spring, while most of the country 
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is affected negatively during the summer; and central-south Africa. Moreover, the impact on 
1000 hPa geopotential height is also consistent with the temperature errors.  

Considering the daily maximum and minimum temperature evaluation with GHCN, results 
show a general improvement in CCI0 in comparison to CTR0, particularly for TMAX. When 
compared with GHCN daily values, TMAX and TMIN forecasts from CTR0 are characterized 
by an overall under and overestimation, respectively, indicating an under-estimation of the 
diurnal cycle range. A closer analysis for TMAX over different regions shows how CCI0 has 
lower errors than CTR0 in EU and RUS during most of the experimental period, particularly in 
spring, and in Western USA, during winter and spring. For the case of TMIN, CCI0 
improvements are found in EU, mostly during spring, and Western USA, during summer. 
During the same period, CCI0 higher errors are also observable in some regions, having a 
mixed behaviour throughout the entire experimental period. Additionally, it is worth noting the 
presence of a warm/cold bias anomaly occurring in the USA region for both TMAX and TMIN. 
The general warming of CCI0 results in a mixed impact, with regions with a prior cold bias 
improving, while regions with a prior warm bias deteriorating. Despite significant advances in 
improving the IFS land cover and LAI realism there are still systematic errors present in the 
model’s forecasts, which can be related to the tunning of the model and respective parameter 
changes. Although positive impacts were found, there are still some regions that require 
further attention but also more detailed consideration for regions with poor observation 
network.  

 

6 Conclusion 

This deliverable was produced in the framework of the CoCO2 project aiming at the 
development of a new observation-based operational anthropogenic CO2 emissions 
Monitoring and Verification Support capacity. Special attention was given to the improvement 
of the ECMWF’s Integrated Forecasting System (IFS) and its land surface component, 
ECLand, via the revision of the land cover and LAI representation using new satellite 
information. This revision was evaluated in terms of the meteorological impact in NWP and in 
surface-atmosphere exchanges of carbon fluxes, including SURFEX simulations and using 
FLUXCOM as reference. In addition to the evaluation of the model developments, the work 
carried out in this report sets the foundations for an integrated NWP and biogenic fluxes 
assessment of the system, which will be used throughout the project and beyond since the 
technical infrastructure has been developed under a version control system and is available 
on request by any project partner interested.  

The surface offline simulations evaluation identified the added values of the revised land cover 
and LAI in term of GPP when used in conjunction with a model configuration using the 
Farquhar photosynthesis model (CLIM_FvCB). Results also suggest that time-varying LAI 
conditions are relevant to the GPP estimates during large-scale extreme events. Limitations 
in the evaluation of NEE and TER arise from uncertainties in the FLUXCOM reference data 
used, and in the ECLand and SURFEX simulations, suggesting that further developments are 
required and that flux adjustments (Agustí-Panareda et al., 2016) are paramount to mitigate 
biased in global CO2 analysis.  

The online simulations of weather forecasts for the year of 2019 focused on the evaluation of 
the meteorological impact of the revised land cover and LAI. The results identified a clear 
improvement of 2-metre air temperature in Eurasia during spring while during summer the 
results were mostly negative in the Tropics, particularly over North-Eastern Brazil and central-
south Africa. Similar results were found when considering 1000 hPa geopotential height. The 
geopotential height at 500 hPa indicated an error growth in CCI0 between forecast lead times 
of 1 to 3 days. A more detailed analysis over the USA with a high density of GHCN stations 
indicated that the pre-existing bias in CTR0 explains the impact of CCI0. There is a general 
increase of temperature in CCI0, mostly induced by the reduction of surface roughness (due 
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to the reduction of high vegetation) that is positive in regions where CTR0 had a negative bias, 
while negative in regions with already a pre-existing warm bias.  

Ongoing developments in ECLand for the next operational IFS cycle include a revision of the 
handling of roughness lengths disaggregation for the tiles and post-processing of 2-metre air 
temperature. Preliminary results (not included in the report) indicate a positive impact on LST, 
however these require further testing with the revised land cover and LAI. Similarly, ongoing 
tests (performed during the preparation of this report) with revised model parameters for TER 
show the potential to improve the global NEE budgets. Therefore, the work in progress will 
continue to provide improvements, with an analysis of the latest version of the system, being 
proposed to be carried out in a second version of this report, which is expected to take place 
in about one year time (i.e., mid-2023). 
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9 Appendix I:  Supplementary Figures 

 

Figure A1: Scores for each of the considered metrics (a) S_bias, (b) S_rmse, (c) S_dist, and (d) 
S_phase for the 6 considered variables (horizontal axis) shown for each simulation (bars) 
considering FLUXCOM R_METEO as reference and including the metrics of FLUXCOM RS 

using FLUXCOM RS_METEO as reference (grey bars). 
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Figure A2: Distribution of S_bias (left panel), S_rmse (centre panels) and S_phase (right 
panels) for each simulation CTR (a, b, c), CLIM (d, e, f), VAR (g, h, i), CTR_FvCB (j, k, l), 

CLM_FvCB (m, n, o), SF_OL (p, q, r), and SF_AS (s, t, u) for the 4 climate regions Tropical, 
Arid, Temperate, and Cold (horizontal axis). Each violin distribution displays the extremes and 

median as a horizontal line, with the value of the median shown at the base of the plot. 
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Figure A3: Same as Figure 19 but for the daily minimum temperature (TMIN) forecasts.  

 

 

Figure A4: Same as Figure 20 but for the daily minimum temperature (TMIN) forecasts.  
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Figure A5: Same as Figure 21 but for daily minimum temperature (TMIN) forecasts. 

 

This publication reflects the views only of the author, and the Commission cannot be held responsible for any use 
which may be made of the information contained therein. 


