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Executive Summary and introduction 

This deliverable report describes the development of prior uncertainty dataset related to the 
European and global prior emission datasets (PED) for the year 2018. We provide an overview 
of the developed methodology to estimate prior uncertainties in the aggregated PED starting 
from a detailed set of uncertainties. This also includes the estimation of gridded uncertainties 
and spatial error correlation lengths. For the global emissions only CO2 is considered, whereas 
for the European emissions CO and NOx are also included. Since the data underlying the 
global and European datasets is different, a slightly different approach is used for the datasets, 
but where possible we kept our methods consistent.  

Two methods are developed that are discussed and compared in this report. The first method 
is an extensive Monte Carlo simulation, which can take into account non-Gaussian error 
distributions and error correlations. However, since this method is computationally expensive, 
especially for a high-resolution dataset, we also used a relatively simple error propagation 
approach. We find that this simpler method gives comparable results, especially considering 
the uncertainties in the prior uncertainty data. 

At the end of the document a guideline is provided for use of the data. The data are available 
through an FTP site (coco2@ftp.ecmwf.int), following the directory structure data-
exchange/WP2/D2-6-prior_emission_uncertainties. Please contact the CoCO2-Coord to 
obtain the FTP password access. 

Background 

Prior emission data is important input data for the modelling efforts done in CoCO2. For 
inverse modelling, and also to understand discrepancies between models and observations, 
the uncertainties in the prior emissions also need to be quantified. The challenge is to get a 
consistent set of uncertainties for the emission datasets, making use of uncertainty estimates 
at a very detailed level and considering different error distributions and correlations. 

First efforts have been made in the CHE project to quantify these uncertainties, which form 
the basis for the work in T2.5 (Choulga et al. (2021a), Super et al. (2020)). Whereas in CHE 
work was done mostly on country-level uncertainties for CO2, we want to extend this work by 
including other sources of uncertainties and co-emitted species. Main focus points are: 

• Create a consistent set of country-level uncertainties, both globally and for Europe. 

• Include CO2 and co-emitted species CO and NOx. 

• Assess error correlations between sectors and species. 

• Assess uncertainties in spatial/temporal proxies, including spatial/temporal correlation 

lengths. 
 

Scope of this deliverable 

Objectives of this deliverable 

The aim is to provide a first set of uncertainties for the PED products from WP2, including 
spatial uncertainties and error correlations. Other WPs can use these data in inverse modelling 
efforts and provide feedback on the current product. This feedback will be taken into account 
for the next deliverable. 

Work performed in this deliverable 

There are two deliverables for T2.5 (D2.6 and D2.7), of which this report (and accompanying 
dataset and user documentation) is the first one. We made a list of priorities and started from 
there. This report describes the work that has been done so far. The current dataset will be 
extended and updated next year with those aspects that are not yet considered in this 
deliverable. 



CoCO2 2022  
 

D2.6 PED uncertainty 2018  7 

Deviations and counter measures 

Originally, the focus year was 2016, but throughout the project this has been updated to 2018. 
Since the PED is for 2018 also the uncertainties are provided for the 2018 data. The PED data 
for 2021 is not yet finished and is therefore not included in this deliverable.  

The uncertainties related to the emission model from D2.5 is not yet included, because the 
emission model is not yet finished. These uncertainties will be part of the next deliverable 
(D2.7). This has no consequences for the project, as the users of this product are also 
responsible for its preparation and the usage is not planned until later. 

Originally, ECMWF had the lead for this deliverable. However, for practical reasons this 
was changed to TNO. Nevertheless, the work has been done by both parties, as planned. 
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1 Input data and pre-processing 

1.1 Prior emissions 

1.1.1 Global emissions 

The global prior emissions are based on EDGARv6.0 for the year 2018 (JRC (2022), Crippa 
et al. (2021a), Crippa et al., (2021b)) with a spatial resolution of 0.1x0.1 degrees. Emissions 
are calculated as the product of activity data (AD) and emission factors (EF). For EDGAR the 
AD primarily come from international statistics (International Energy Agency). For most 
countries and sectors default EFs are used from the IPCC Guidelines for National Greenhouse 
Gas Inventories (IPCC, 2006). A total of 21 sectors is differentiated, which are grouped into 6 
aggregated sectors for this deliverable (Table 4, for link with IPCC sectors see Table 4). 

Table 1: Overview of emission categories in the emission data (EDGAR sector) and the 
uncertainty data (grouped). 

Grouped category 
name 

EDGAR sector Note 

PublicPower ENE Power industry 

SWD_INC Solid waste incineration 

Industry CHE Chemical processes 

IND Combustion for manufacturing 

IRO Iron and steel production 

NEU Non energy use of fuels 

NFE Non-ferrous metals production 

NMM Non-metallic minerals production 

OtherStatComb RCO Energy for buildings 

RoadTransport TNR_Other Railways, pipelines, off-road transport 

TRO Road transportation no resuspension 

Shipping TNR_Ship Shipping 

Other AGS Agricultural soils 

PRO Fuel exploitation 

PRU_SOL Solvents and products use 

REF_TRF Oil refineries and Transformation 
industry 

TNR_avi_CDS Aviation climbing, descent 

TNR_avi_CRS Aviation cruise 

TNR_avi_LTO Aviation landing, take-off 

 

In addition to the EDGAR emissions database we use the Large Scale International Boundary 
(LSIB) dataset (U.S. Office of the Geographer (2017)). This dataset contains country borders 
of 279 countries, which are separated into areas with well- and less well-developed statistical 
infrastructures. The LSIB shapefiles were used to create country fraction maps at the 
resolution of the EDGAR v6.0 emission data. First, country shapefiles were rasterised globally 
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to a regular grid at 100m resolution and then averaged per country to the EDGAR resolution. 
The emissions over oceans (i.e. all emissions left after removing all countries) were inspected 
and 56 grid cells with emissions from the energy sector (ENE), manufacturing industry (IND), 
fuel exploitation (PRO) or oil refineries/transformation industry (REF_TRF) were assigned to 
a country. Finally, Japan, Maldives and Philippines were additionally buffered with one extra 
grid cell over the perimeter of these countries. This results in a global country fraction map. 

The emissions from the energy sector (ENE) were separated into ENE_sup and ENE_ave, 
fluxes from super emitting power plants and fluxes from average emitting power plants (grid 
cell threshold of 7.9 x10-6 kg substance/m2/s). Power plants are separated into CO2 emitting 
(fossil fuel use) and non-emitting (renewable energy use) ones using the Global Power Plant 
Database (Global Energy Observatory et al. (2018)). This database contains information on 
geographical locations, owning country and fuels used for around 28,500 power plants. The 
CO2 emitting power plants are rasterised globally to a regular grid at 100m resolution, where 
each grid cell contains a country ID. Finally, we checked whether each power plant was 
matched with an energy sector grid cell at the native resolution from one country only. If so, 
the emissions from that power plant are added to the country budget. Otherwise, we assume 
that the emissions are shared between countries according to the country fraction map. 

Then all flux maps were translated into emission mass maps in kiloton (kt) taking into account 
the grid cell areas. Emission budgets per country per sector were computed by summing grid 
cell emission values. Then emission budgets per country were refined by taking into account 
additional yearly emission information from EDGAR v6.0 "Timeseries" EXCEL file (Appendix 
A, Table 4) and a list of CO2-emitting activities which must not be neglected according to the 
IPCC 2006 guidelines, resulting in 51 sub-sectors. Following the same proportion of country’s 
yearly budget yearly emission grid-cell values were disaggregated into 51 sub-sector maps. 

1.1.2 European emissions 

The European prior emissions used as a basis for this work is the TNO GHGco v4 (delivered 
end of 2021 by T2.1) for 2018. The dataset is described in D2.1 and by Kuenen et al. (2022). 
The dataset is compiled from emissions reports delivered to EMEP/CEIP and the UNFCCC 
by individual countries. The reports are very detailed and contain a long list of sectors (NFR 
categorisation) and fuel splits. Because the level of detail in reporting is a bit different for 
greenhouse gases and air pollutants, the emissions are (dis)aggregated to a total of 246 
sector-fuel combinations. In the final dataset these emissions are aggregated into 12 sectors 
(GNFR categorisation, see Table 2), with an extra split for road transport, but for this task we 
work with the detailed sector split. Not all countries report their emissions and in that case 
other emission datasets are used for gap filling. For these countries emissions are only 
available at the GNFR level. Note that the uncertainty estimates are different for those 
countries, as we lack detailed information. 

The detailed country-level emissions are spatially downscaled using proxy maps, as explained 
by Kuenen et al. (2022). The proxy maps describe the fraction of the country-level emissions 
for a particular sector that is assigned to one grid cell. Therefore, the fractions sum up to 1 for 
each country-sector combination. There are many different proxy maps and some of them are 
shared between multiple sectors. All pollutants are spatially disaggregated with the same 
proxy maps for a particular sector. Also for the spatial downscaling some exceptions apply. 
For some countries the spatial proxies are not available or replaced with other datasets. 

To avoid a lot of work on sectors which are not that relevant we first made a list of sector-fuel 
combinations which make up more than 95% of the emissions for CO2, CO and NOx for the 
whole domain. When we combine those lists for all pollutants we end up with 90 sector-fuel 
combinations that describe 96% of CO2 emissions, 98% of CO emissions, and 97% of NOx 
emissions. For these sector-fuel combinations we look for uncertainty data and the remainder 
gets an uncertainty of zero.  
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Table 2: Overview of aggregated emission categories in the European emission data (GNFR) 
and the uncertainty data (grouped). Also relative uncertainties (95% confidence interval) in AD 

and EF per GNFR sector are given. 

GNFR 
category 

GNFR category name Grouped category 
name 

AD EF 

A A_PublicPower PublicPower 0.02 0.049 

B B_Industry Industry 0.03 0.049 

C C_OtherStationaryComb OtherStatComb 0.15 0.049 

D D_Fugitives Other 0.05 0.75 

E E_Solvents Other   

F F_RoadTransport RoadTransport 0.05 0.05 

G G_Shipping Shipping 0.05 0.015 

H H_Aviation Other 0.5 0.05 

I I_OffRoad Other 0.5 0.02 

J J_Waste Other 0.13535 0.0707 

K K_AgriLivestock Other   

L L_AgriOther Other 0.2 0.2 

 

It was decided to group together some sectors which are of minor importance for CO2 (<10%) 
in the final product, so we describe uncertainties for six sectors (see Table 2). For two of these 
sectors we include spatial errors and correlation lengths, namely other stationary combustion 
(mostly residential/commercial heating) and road transport. The proxy maps used for these 
sectors are given in Table 3. We made this decision based on knowledge on the underlying 
proxies and the possibility to estimate errors for them with relative ease for purpose of 
developing the methodology. For all other sectors we assume no spatial errors for now and 
this also applies for countries for which emissions are not downscaled using the selected 
proxies. Although the purpose of this deliverable is to start developing the methodology and 
not providing a complete product at once, users of this preliminary product should be aware 
that spatial errors are missing for some sectors. This will mainly affect the correlation between 
CO2 and co-emitted species, which is strongly related to the spatial patterns. For the next 
deliverable we aim to include the other sectors as well. 

1.2 Country-level uncertainties 

1.2.1 Global uncertainties 

Uncertainties for country budgets are based on the IPCC 2006 guidelines (IPCC, 2006) and 
its 2019 refinements (IPCC, 2019). From these guidelines a table with major CO2 emitting 
activities (92 in total) and their upper and lower uncertainty bounds (i.e. 95% confidence 
interval) for countries with well- and less well-developed statistical infrastructures was 
compiled (full information can be accessed through Choulga et al. (2021b)). Note that 
uncertainty bounds are rarely symmetrical and can differ substantially between countries with 
well- and less well-developed statistical infrastructures. This list is filtered again to match the 
51 sub-sectors for which country budgets and flux maps were calculated. 
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1.2.2 European uncertainties 

1.2.2.1 Greenhouse gases 

Most countries in the European domain are Annex-I countries, which report their greenhouse 
gas emissions to the UNFCCC on an annual basis following standardized reporting guidelines. 
In most cases these countries also include an uncertainty estimate in their NIR reports 
(National Inventory Report), with separate uncertainty estimates for AD and EF. From these 
country reports we extract all available uncertainty information. There are different methods 
for uncertainty calculations and we take the most detailed one (Tier 2 (Monte Carlo) if 
available, else Tier 1 (error propagation)). For many countries Tier 2 estimates are available, 
but often the differences with the Tier 1 estimates are small. 

The level of detail of the reported uncertainties differs per country and sector, but in all cases 
gap filling is needed to cover all relevant sectors. For example, most countries report 
uncertainty per fuel type for road transport, whereas emissions are available per vehicle type 
as well. We assume that the uncertainty given for road transport is then valid for all vehicle 
types. In the case that no uncertainty data is available for a sector we use the median 
uncertainty from all countries that do report something for this sector. The variability between 
countries in reported uncertainties for AD and the EF of CO2 is limited and therefore this 
approach is suitable. We also use this median uncertainty for countries with emission 
reporting, but without an uncertainty estimate. 

For countries that do not report their emissions we estimate the uncertainties at the GNFR 
level from the IPCC guidelines (IPCC, 2006). Since the emission factor for CO2 depends only 
on the fuel type and not the combustion technology the uncertainty ranges are rather generic 
and consistent across sub-sectors. Where needed we have averaged uncertainty ranges, 
selected the largest uncertainties from a given range, or made an estimate based on the 
reported uncertainties from Annex-I countries. This results in the uncertainties given in Table 
2. Note that GNFR sectors E and K are missing, because they are irrelevant for CO2. 

1.2.2.2 Air pollutants 

For air pollutants (NOx and CO) we assume that the same AD is used to calculate the 
emissions as for greenhouse gases. Therefore, the same uncertainties are applied as well. 
We use global EF uncertainty data per NFR sector-fuel combination from the most recent 
EMEP guidebook (European Environment Agency (2019)). These uncertainties are generic 
and applied to all countries, irrespective of whether emissions are reported or taken from 
another emission dataset. 

The data are available for varying degrees of aggregation, starting at a tier-1 level (generic for 
the whole sector, often fuel-based) to tier-2 and tier-3 (technology-based and very specific). 
We typically use the tier-1 values that represent NFR sectors, since we do not consider a split 
per combustion technology. Tier-1 EF uncertainties are typically given for a number of fuel 
types, i.e. solid, gaseous, liquid and biomass. For power production these fuel types are split 
out further (e.g. solid into hard & brown coal) and we use the EF uncertainty of the dominant 
fuel type in Europe, making use of Eurostat data. As with the greenhouse gases, the tier-1 
uncertainties for air pollutants are sometimes given at a more aggregated level than the 
emissions (e.g. industrial combustion as a whole) and we assume the same uncertainty 
applies to all sub-categories belonging to that sector. 

In the cases where there is no uncertainty data for a specific sector we make use of the generic 
error ranges (95% confidence interval) also provided in Chapter 5 of the guidebook, on 
uncertainty estimation. This generic error range is different per sector, but for most sectors 
with missing data this amounts to an interval of -50% and +100% of the EF. For road transport 
we also consider biofuel emissions, but no uncertainty is given, so we apply the generic 
standard uncertainty range. Mopeds are a separate category, for which the uncertainties are 
copied from motorcycles. For NOx, the chemical industry is dominated by nitric acid 
production, hence we use the tier-2 value for nitric acid there.  
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1.2.3 Estimating uncertainties in emissions 

We start with pre-processing the uncertainties gathered from the NIR reports and the 
IPCC/EMEP guidebook. In all cases the uncertainties represent a 95% confidence interval, 
which we assume is 2 times the standard deviation (σ). In the NIR reports the AD and EF 
uncertainties are sometimes reported as one value. When the lower and upper value are 
similar (less than 5% difference) we assume a Gaussian error distribution, otherwise we 
assume a lognormal error distribution. For the air pollutants the error distribution is often 
lognormal. When the reported standard deviation exceeds 25% we also assume a lognormal 
error distribution to avoid getting negative values. 

Since we do not always have the expected values of AD and EF we will work with emissions 
(E). Therefore, the uncertainties in AD and EF need to be combined to get the uncertainty in 
the emissions (E). We use a simple error propagation to estimate the uncertainty in the 
emissions from the standard deviations of AD and EF: 

 𝜎𝐸,𝑛 = √(
𝜎𝐴𝐷

𝐴𝐷
)

2
+ (

𝜎𝐸𝐹

𝐸𝐹
)

2
= √𝜎𝐴𝐷,𝑛

2 + 𝜎𝐸𝐹,𝑛
2     (1) 

The subscript ‘n’ means that we work with normalized (or relative) standard deviations, since 
we do not know the exact values of AD and EF. Note that we assume there is no error 
correlation between AD and EF, which is probably realistic. 

 
Figure 1: Two lognormal error distributions for emissions from agricultural sub-sector 3.C.2 
(upper) and residential sub-sector 1.A.4 (lower) for the UK. Distributions are computed by 

taking a random sample (N = 14110) using the standard deviation and mean of the Gaussian 
distribution, based on EDGAR. 

Normal error propagation works well with Gaussian error distributions, but we also have to 
deal with lognormal error distributions. A lognormal distribution is simply an exponential 
function of a Gaussian distribution. Therefore, we can calculate the standard deviation of the 
Gaussian function belonging to a lognormal function as: 

 𝜎𝑛 =
(ln(𝑙𝑖𝑚𝑢𝑝𝑝𝑒𝑟)−𝜇

√2∙𝑒𝑟𝑓−1(2∙0.975−1)
        (2) 
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Or use a simple approximation: 

 𝜎𝑛 =
(ln(𝑙𝑖𝑚𝑢𝑝𝑝𝑒𝑟)−ln(𝑙𝑖𝑚𝑙𝑜𝑤𝑒𝑟))

4
       (3) 

Where limupper is the 97.5 percentile and limlower the 2.5 percentile of the lognormal distribution 
(i.e. the numerator in Eq. 3 is the 95% confidence interval) and µ in Eq. 2 is the mean of the 
Gaussian distribution. In Eq. 3 we divide by 4 to get the σ value. It is also possible to use one 
of the percentiles in combination with the expected value and then divide by two. 

With Eq. 3 we can translate the lognormal function into a Gaussian one, extract the relevant 
parameters for the covariance matrix and still apply Eq. 1. An example is shown in Figure 1. 
Note that officially the combination of a normal and lognormal function doesn’t result in a 
lognormal function, because the result can be negative. However, here we make the 
assumption that the combined distribution is lognormal, because the uncertainty of the 
Gaussian distribution is often relatively small. 

1.2.4 Error correlations 

The errors in AD and EF are not always independent. For example, at the country level the 
total gasoline consumption by road transport is relatively well-known. However, the AD we use 
for road transport is split into different vehicle types and road types. The error that is made in 
assigning the fuel consumption to each of these sub-categories needs to be compensated for 
by another sub-category. Hence, the error in the AD is in this case negatively correlated. 
Additionally, the AD is shared between pollutants, meaning a positive error correlation exists 
between the AD per sector and fuel for all pollutants. Also for EFs error correlations may occur, 
for example for sectors that receive the same EF estimate because they use similar 
technologies. It is likely that if the EF of one of those sectors is overestimated that this is also 
true for the other related sector(s). In this case, the error correlation is positive. 

Unfortunately, the error correlations are unknown and difficult to estimate. Additionally, it is 
unclear how to estimate the error correlation between emissions from two sectors when both 
the AD and EF are correlated. The error correlation tends to go towards the error correlation 
for the most uncertain parameter (either AD or EF). To examine the importance of error 
correlations we do a sensitivity analysis on the European emissions. When two sectors have 
a correlation in either AD or EF we use the correlation for that variable. Otherwise we take the 
error correlation of the variable with the largest uncertainty in either of the two sectors. We 
use different correlation coefficients for a range of sectors: 

• Correlations in AD occur for: 

– All road transport (different vehicle and road types) per fuel type 

– Biomass consumption for sub-sectors under OtherStatComb 

– Liquid fuel consumption for sub-sectors under OtherStatComb 

– All off-road transport and machinery per fuel type 

• Correlations in EF occur for: 

– Road transport (different road types) per vehicle type and fuel type 

– Off-road transport (different fuel types) per sub-sector 
The results and implications are discussed in section 3.1. 

1.3 Spatial errors and correlations 

1.3.1 Errors in global proxy maps 

For the global emission dataset we make a first estimate of the grid-cell uncertainties using 
the country’s normalised standard deviation as a constraint. Hence, the input for the global 
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grid cell uncertainties are the country-level sector-specific emission uncertainties. The global 
gridded uncertainties are only calculated using an error propagation approach. 

1.3.2 Errors in European proxy maps 

For the European dataset we take a different approach. The spatial errors in the emissions 
are caused partly by the resolution of the grid, but more importantly by uncertainties in the 
proxy maps used for downscaling the national emissions. There are different sources of 
uncertainty in the proxy maps: 

• The value of each pixel, e.g. the population density 

• The quality of the proxy, e.g. whether there are cells missing that in reality contain activity 
or vice versa 

• The representativeness of the proxy for the activity causing the emissions 

Table 3: Overview of proxy maps included in the uncertainty analyses for the European 
emissions, their 95% confidence interval and correlation length. 

Proxy map Uncertainty 
(95% CI) 

Correlation length (km) 

RoadTransport_Urban_PC 0.1 18 

RoadTransport_Urban_Mopeds 0.1 18 

RoadTransport_Urban_Motorcycles 0.1 18 

RoadTransport_Highway_HDV 0.1 30 

RoadTransport_Highway_LDV 0.1 30 

RoadTransport_Highway_Buses 0.1 30 

RoadTransport_Highway_PC 0.1 30 

RoadTransport_Highway_Motorcycle
s 

0.1 30 

RoadTransport_Highway_Mopeds 0.1 30 

RoadTransport_Rural_Buses 0.1 24 

RoadTransport_Rural_LDV 0.1 24 

RoadTransport_Rural_HDV 0.1 24 

RoadTransport_Rural_Motorcycles 0.1 24 

RoadTransport_Rural_Mopeds 0.1 24 

RoadTransport_Rural_PC 0.1 24 

RoadTransport_Urban_HDV 0.1 18 

RoadTransport_Urban_LDV 0.1 18 

RoadTransport_Urban_Buses 0.1 18 

Population_total_2015 0.1 24 

Population_rural_2015 0.1 24 

Population_urban_2015 0.1 24 

Wood_use_2014 0.1 24 

CORINE_Arable_land_2018 0.1 24 
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The proxy quality is a difficult error to work with. If a grid cell falsely lacks activity there is no 
way to correct for that, as scaling a value of zero always gives zero. Similarly, if the location 
of a point source is wrong (for example the location of the head office is given instead of the 
actual emission stack) it is difficult to estimate where it should be instead. Since we cannot 
reliably compensate for this error, we choose to not account for it, while acknowledging it as 
a local source of uncertainty. 

The errors in the pixel values are estimated from metadata for the proxy data. The population 
density map is based on Landscan, which estimates ambient population. This represents not 
only residential population but also working and travelling population. Archila Bustos et al. 
(2020) report an accuracy rating of around 93% for densely populated areas in Sweden, 
whereas for China the accuracy is around 88% (Ma et al., 2021). In general, sparsely 
populated areas seem to be more prone to errors, but in an absolute sense we expect larger 
uncertainties for densely populated errors. The proxies for road transport are based on 
OpenTransportMap (Jedlička et al., 2016), which combines different datasets which each will 
have their uncertainty. Unfortunately, little is known about the overall uncertainty in this 
dataset. 

The representativeness error behaves different from the error in the pixel values. Besides that 
it adds an uncertainty to each pixel, it also causes errors to be correlated between pixels that 
have similar characteristics. For example, the heating demand for residential buildings 
depends on the population density. People that live closer together generally need less 
heating, e.g. in high-rise buildings. This means that the heating emissions are not linearly 
related to population density. If we make an error in describing this relationship it will affect 
pixels with similar characteristics in a similar fashion. Hence errors are spatially correlated. By 
combining the error in the pixel values and representativeness we estimate a CI of 10% for all 
proxy maps in Table 3. Note that for those countries for which emissions are not downscaled 
using these proxies no spatial error is included. The spatial error correlation will be explored 
in the next section.  

1.3.3 Spatial error correlation lengths 

We define the error correlation length as the maximum distance at which two grid cells are still 
correlated to each other. The correlation length is based on proxy values (not uncertainties), 
as the representativeness error causes correlations between pixels with similar values, and is 
estimated by constructing semi-variograms for each proxy map. A semi-variogram is a 
measure of the variance between two points related to their distance, where points nearer to 
each other show less variance and more correlation than points which are further apart (spatial 
autocorrelation). A semi-variogram model can be fitted to this data representation to obtain a 
curve showing the semi-variance as a function of distance. The semi-variogram range 
parameter is the distance of maximum semi-variance, i.e. the distance where values are no 
longer related to each other in space. We take this range parameter as an approximation of 
the correlation length for our proxy maps, rounded towards the nearest multiple of 6/10 km to 
represent the grid spacing (Europe/global).  

The main proxy map for EDGARv6.0 are population density and settlement type based on 
Global Human Settlement Layer (GHSL) dataset (Melchiorri et al., 2019). The GHSL dataset 
is multitemporal, here last available year 2015 maps were used. Population density and 
settlement type maps were first re-gridded to a regular grid at 1 km resolution, and then sum 
and mode values at EDGARv6.0 grid (i.e. regular grid at ~10 km horizontal resolution) were 
computed respectively. Finally, non-populated grid-cells (i.e. population density equals zero) 
were masked over both maps and resulting point list was formed. Distances between all 
populated grid-cells within 150 km radius were computed. Distances were binned with 10 km 
intervals to compute Pearson’s correlation r and significance p values between population 
grid-cells pairs. Correlation length is the greatest distance where correlation values constantly 
decrease by 1 % or more and p values are continuously significant at p < 0.05 (i.e. p not 
greater 0.05) for both population density and settlement type values. 
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Figure 2: Pearson’s correlation r for population density and settlement type class as a function 

of distance for the UK (upper); derived correlation lengths for all countries 

For the United Kingdom the correlation length is 70-80 km. The most common correlation 
length between 27 European countries is 30-40 km (Figure 2). This value can be also used as 
the most appropriate value globally. However, it was observed that the error correlation length 
as it is defined here depends on country’s urbanisation level. Countries with a high 
urbanisation level tend to have huge heavily populated urban clusters, e.g. Japan and the UK. 
In contrast, countries with lower urbanisation levels tend to have more smaller urban clusters 
that might not correlate by type with each other, like Finland and Sweden. 

 
Figure 3: Derived correlation lengths for the European proxy map of total population density 

(2015), binned per 5 km. 

For Europe the semi-variogram model construction is done using the fit.variogram function 
from the gstat geostatistical package in the R software. For each proxy map listed in Table 3 
and each country for which emissions are downscaled using that proxy (excl. Russia) we 
construct a semi-variogram and fit a spherical semi-variogram model, setting the limits of the 
considered distance between 6 km (grid spacing) and 120 km. The fitting procedure then tries 
to optimize the model parameters to provide the best fit to the data. We do this twice: once 
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without setting an initial sill (the semi-variance at distance 0), and once by setting it to 0. This 
is to ensure that the resulting range values are not just the cause of the initial values set in the 
model. This results in two range values per country per proxy map and we pick the value that 
is within our set boundary (between 6 and 120 km) or the average of the two if both values 
are within this range. 

 

Figure 4: Derived correlation lengths for the European road transport proxy maps per road 
type for personal cars (PC), Heavy Duty Vehicles (HDV) and Light Duty Vehicles (LDV) 

combined, binned per 5 km. 

This results in a histogram of correlation lengths (Figure 3 and Figure 4). Similar to what was 
found for the global dataset, we see large differences between countries with similar 
characteristics. For example, there seems to be a systematic difference in the values between 
countries in North/South Europe and East/West Europe. However, using country-specific 
correlation lengths would create irregularities near country borders. Therefore, we take the 
median value, rounded up towards the nearest 6 km to match the grid spacing, to be a fairly 
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representative value of the correlation length for that proxy map for all countries considered 
(Table 3). 

For the road transport proxy maps the various vehicle types over a given road type do not 
show much variability in correlation lengths. However, different road types for a given vehicle 
type provide distinctly different correlation lengths. Hence we have combined the major vehicle 
types (passenger cars, light and heavy duty vehicles) for each road type (urban, highway, 
rural) to obtain road transport correlation lengths per road type (Figure 4). 

1.3.4 Geographical uncertainty 

For the global emission dataset we calculate the geographical uncertainty based on the 
country fraction map. From the definition given by Andres et al. (2016) the geographical 
uncertainty depends on number of neighbouring pixels from the same country: if a grid cell 
has no neighbours from the same country, that grid cell is assigned an uncertainty of 100%. 
In case there is 1 neighbour from the same country the uncertainty is 87.5%, in case of 2 – 
75%, 3 – 62.5%, 4 – 50%, 5 – 37.5%, 6 – 25%, 7 – 12.5%, and in case when all neighbours 
are from the same country a grid cell is assigned an uncertainty of 0%. First, a country binary 
map was computed (if country fraction is greater than 0 grid-cell is assigned 1, otherwise – 
grid-cell is assigned 0). Geographical uncertainty values were assigned to each grid cell and 
all country maps were finally merged into one global map by summation. 

2 Methods 

Uncertainty estimates are mostly available at a detailed level (sectors, fuel-specific) and these 
need to be propagated to get an uncertainty estimate at the aggregated level. Simple error 
propagation techniques work well under specific circumstances, but when errors follow a non-
Gaussian distribution or they are correlated things become more complicated. In such cases 
a Monte Carlo simulation can provide a more reliable estimate of the final uncertainty. 

A Monte Carlo simulation produces a range of possible outcome values for any variable based 
on its probability distribution. It relies on random sampling from the probability distribution, 
which allows for different distribution shapes (e.g. Gaussian, lognormal, uniform, etc.). Another 
major advantage of the Monte Carlo simulation is that it can deal with interdependent input 
variables. A major downside is that it is a computationally expensive method, especially when 
dealing with a high spatiotemporal resolution. Therefore, we compare the results from the 
Monte Carlo simulation with the error propagation method to see if the latter gives decent 
results and could be used as well. 

2.1 The Monte Carlo approach 

2.1.1 Building the covariance matrix 

To take into account error correlations a covariance matrix is needed. A covariance matrix is 
a square matrix that describes the covariance between each pair of elements in a vector. The 
diagonal values describe the variances of each element. A covariance matrix is always 
symmetric and positive semi-definite. 

 

For a variable A with a Gaussian error distribution the variance can be calculated from the 
standard deviation: 

 𝑣𝑎𝑟𝐴,𝑛 = 𝜎𝐴,𝑛 ∙ 𝜎𝐴,𝑛        (4) 

The covariance between variables A and B can be described as: 

 𝑐𝑜𝑣𝐴𝐵,𝑛 = 𝑟 ∙ 𝜎𝐴,𝑛 ∙ 𝜎𝐵,𝑛        (5) 

Where r is the correlation between the errors of both variables. The correlation takes a value 
between -1 (completely negatively correlated) and 1 (completely positively correlated). A 
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correlation of zero means the variables are uncorrelated. Note that there may be a need to 
scale error correlations to comply with the positive semi-definite requirement. The maximum 
negative correlation is: 

 𝑟𝑚𝑖𝑛 =
1

𝑁−1
         (6) 

Where N is the number of sectors that are correlated between themselves. To implement 
negative error correlations in AD we calculate the largest negative correlation and multiply that 
with the overall error correlations assumed for the whole group of sectors. 

When all these values are calculated a covariance matrix P can be made, which takes this 
shape: 

 𝑷 = [

𝑣𝑎𝑟𝐴,𝑛 𝑐𝑜𝑣𝐴𝐵,𝑛 𝑐𝑜𝑣𝐴𝐶,𝑛

𝑐𝑜𝑣𝐴𝐵,𝑛 𝑣𝑎𝑟𝐵,𝑛 𝑐𝑜𝑣𝐵𝐶,𝑛

𝑐𝑜𝑣𝐴𝐶,𝑛 𝑐𝑜𝑣𝐵𝐶,𝑛 𝑣𝑎𝑟𝐶,𝑛

]      (7) 

We make the assumption that each of the Gaussian functions has a mean value (µ) of one 
and therefore the standard deviations in Eq. 4 and 5 are normalized. This makes it easier to 
do calculations without an emission budget at hand. 

2.1.2 Creating an ensemble 

After preparing the covariance matrix we can start the actual Monte Carlo simulation. We start 
with a Cholesky decomposition of the covariance matrix: 

 𝑷 = 𝑳𝑳∗         (8) 

In the case of only uncorrelated errors this results in a matrix L with standard deviations (i.e. 
the square root of the covariance matrix). However, if there are error correlations then this 
creates a matrix which also contains off-diagonal values. Combining this matrix with a vector 
of uncorrelated random samples (u) from a normal distribution with µ = 0 and σ = 1 through a 
dot product gives us a sample vector with the covariance properties of the whole system.  

 𝒑 = 𝑳 ∙ 𝒖         (9) 

This vector p contains one sample from the whole system of variables, i.e. it represents one 
ensemble member. Now, we need to translate this normalized vector into one that represents 
the actual values of the variables. For each variable with a Gaussian distribution we can 
calculate the actual sample value as: 

 𝑋𝑚 = 𝑋̅(𝒑[𝑥] + 1)        (10) 

Where p[x] represents one element of the p vector corresponding to variable X, Xm is the 
estimated value of variable X for ensemble member m, and X̄ is the expected value of variable 
X. Note that we add one to the vector element to ensure we sample from a Gaussian function 
with µ = 1 instead of µ = 0. For each variable with a lognormal distribution we can calculate 
the actual sample value as: 

 𝑋𝑚 = 𝑋̅𝑒𝒑[𝑥]         (11) 

Now we have one vector that contains an estimated value for each variable, taking into 
account random errors and correlations. We can use this vector in a model, for example to 
calculate the emissions on a more aggregated sector level. However, we want to estimate the 
error distribution of the model output and for that we need to create an ensemble of vectors 
by repeating the previous steps to get more vectors p with incorporated random errors. 

2.1.3 A spatial ensemble 

The approach described here can also be used to make a spatial ensemble, but then the 
covariances in the matrix P are a function of distance. That means for each element on the 
matrix the distance to other elements needs to be known and the correlation coefficient 
between elements i and j can be calculated as: 
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 𝑟𝑖,𝑗 = 𝑒−𝑥𝑖,𝑗 𝑙⁄          (12) 

Where xi,j is the distance between elements i and j and l is the correlation length scale. The 
correlation thus follows an exponential decay function, which is divided by the sum of all 
correlations within distance l. After distance l we assume the correlation is zero, following the 
definition of Kunik et al. (2019). When combined with the gridded uncertainty, which takes the 
same value per proxy map for each pixel and is assumed to have a Gaussian error distribution, 
we can build the covariance matrix (Eq. 7). 

We create one set of perturbations for each proxy map and apply this equally to all pollutants 
using that proxy map. The proxy maps basically describe the spatial pattern in activity, which 
is the same for all pollutants. Therefore, the strongest correlation between pollutants is in their 
spatial distribution and we want to maintain this by giving each pollutant the same perturbation. 
For the selected sectors, which are related to fossil fuel combustion, this seems valid. 
However, in some other cases this may not be true, especially when pollutants result from 
different processes. Also, for now we have no sectors using the same proxy maps, but if this 
is the case this poses an additional challenge. Although the proxy value uncertainty is always 
the same, the representativeness error may be different. We will take this into consideration 
for the next deliverable. 

2.2 Error propagation 

For comparison we also use error propagation to calculate the aggregated uncertainties. If the 
results look similar to the Monte Carlo-based uncertainties this may provide a good alternative 
for large datasets. We are not looking for a perfect match, as the uncertainty in the prior 
uncertainty data is already quite large. But we do want a method that correctly captures the 
order of magnitude and variability between countries and pollutants. 

There are several equations to calculate the uncertainty from the combination of multiple real 
variables. We have already shown how to calculate the error of the product of two uncorrelated 
variables (Eq. 1). This is used to calculate the total uncertainty in the emissions from the 
uncertainty in AD and EF. However, this is still very detailed and we want to know the 
uncertainty for an aggregated sector. In that case we need to sum emissions and the 
uncertainty in the aggregated emissions: 

 𝜎𝑎𝑔𝑔 = √∑ 𝜎𝑠𝑢𝑏,𝑚
2𝑛

𝑖=𝑚         (13) 

Where the subscript ‘agg’ refers to the aggregated emissions and uncertainty and the 
subscript ‘sub’ refers to the sub-sectors part of that aggregated sector. To use Eq. 13 we do 
need the emission budgets, because it uses actual standard deviations instead of normalized 
ones. The outcome of Eq. 13 can be compared to the relative standard deviation in the 
ensemble of country-level emissions per sector resulting from the Monte Carlo simulation. 

For the European proxies a similar approach is used as for the country-level emissions, but to 
calculate the standard deviations a weighted average proxy map per aggregated sector is 
calculated. This means that for each combination of pollutant and country we determine the 
relative contribution of each sector to the aggregated sector, assign a weight to the 
corresponding proxy map and multiply that value with the fraction in each grid cell. This results 
in a new proxy map per sector with a sum of 1 per country. Next, we calculate the uncertainty 
in the averaged proxy map using Eq. 13, where the standard deviation is now related to the 
fraction in each grid cell. We only do this for CO2 to create one set of perturbations, as was 
discussed before. Since all proxy maps have the same uncertainty (for now) this is a valid 
assumption. The actual values of the averaged proxy maps are pollutant-specific. 

To generate global gridded uncertainties (i.e. disaggregating country yearly uncertainties to 
each country’s grid cell) as a first attempt it was assumed that grid cell uncertainties within a 
country are uncorrelated, and are equal to country’s normalised standard deviation 𝑁 

multiplied by a boosting parameter 𝛼 – specific for each country and sub-sector, following Eq. 
14:  
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 (𝑈𝑐𝐵𝑐)2 = (𝑈1𝐵1)2 + (𝑈2𝐵2)2 + ⋯ + (𝑈𝑝𝐵𝑝)
2

, 𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑈𝑐
𝐵𝑐

 𝑎𝑛𝑑 𝑈𝑝 =
𝑈𝑐∙𝛼∙𝐵𝑝

𝐵𝑐
= 𝑁 ∙ 𝛼 ∙ 𝐵𝑝 ⇒ 

𝛼 = √
𝐵𝑐

4

[𝐵1
4+𝐵2

4+⋯+𝐵𝑝
4 ]

,        (14) 

where 𝑈 and 𝐵 represent standard deviation of distribution and emission budget, c and 1,2,…,p 
represent countries and pixel values respectively. To merge country’s gridded uncertainties 
per sub-sector into more general groups Eq. 13 was used. Similar as to the European proxies 
also for the global emissions a weighted average proxy map per aggregated sector was 
calculated. Figure 5 shows the results for the industry sector. The majority of all values globally 
(i.e. 95 %) are between 0.6 and 50.3, with median value 13.4. 

 

Figure 5: Map (upper) and value distribution (bottom) of normalised standard deviations per 
grid cell for the Industry sector. 

In cases when emissions per grid cell are quite small, but country has lots of these grid-cells 
(i.e. emissions were not allocated but distributed over certain areas, e.g. according to 
population density), the boosting parameter 𝛼 can be unrealistically huge. This leads to 
extremely high normalised standard deviation values per grid cell, e.g. for Residential/ 
commercial combustion group for Brazil and China, and for RoadTransport group – for United 
States, Canada and Russia. This issue is investigated further in more detail and a more 
suitable solution is being tested. Preliminary results for the industry sector show that majority 
of all values globally (i.e. 95 %) are between 0.2 and 2.4, with median value being 0.8 and 
maximum value 7.6. 

Finally, we need to determine the error correlation length for the aggregated sectors. For this 
we also calculate a weighted average correlation length, using the same approach as for the 
proxy maps and only for CO2. However, because the combined correlation length is also 
slightly sensitive to the uncertainty in each proxy map we calculate the weight based on both 
the emissions and the uncertainty (i.e. relative emission share multiplied by relative uncertainty 
share). 

3 Results 

For clarity we will discuss the results at different levels of detail. First, we start with the 
importance of error correlations at the country-level. Then we show results for country-level 
annual emissions from the Monte Carlo vs. the error propagation method. Finally, we will have 
a look at the spatial errors. 

3.1 The importance of error correlations 

To better understand the impact of assuming a particular correlation strength in AD and in EF 
we run the Monte Carlo simulation for different correlations and compare the emissions (only 
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for the European data). Interestingly, we find that the industry sector shows quite some 
variability due to the correlations, while there are no correlations for this sector. It seems that 
this is caused almost entirely by the high uncertainty for biomass from the paper and pulp 
industry in Sweden. Sweden reports an uncertainty of 100% in their CO2 emissions for this 
sector, which makes up almost 20% of the total CO2 emissions from the industry. It seems 
that with such large uncertainties for a sector that is relatively important, the sample that we 
used here is not large enough to get a stable result. This means that the distribution looks 
different if we create a new ensemble using the same settings, so differences between the 
runs may not just be caused by choosing different error correlations. Therefore, we removed 
Sweden from the sample and worked with the other countries only to illustrate the importance 
of error correlations.  

 
Figure 6: PDF of emissions of CO2, CO and NOx (kg/yr) resulting from a Monte Carlo 

simulation (N=2000). 

Figure 6 shows the probability density function (PDF) of the emissions for each pollutant. For 
CO and NOx the presence of correlations has no significant impact. This was to be expected; 
the uncertainties in the emissions are relatively large for these pollutants and therefore the 
correlations have little effect. For CO2 we also barely see an impact of the correlations, despite 
the smaller uncertainties. Perhaps this is due to the absence of error correlations in the most 
dominant source sectors for CO2. 

As discussed before, we assume error correlations exist between sub-sectors from road 
transport, other stationary combustion and from the other sector (off-road transport). Figure 7 
shows almost no impact from the correlations on other stationary combustion, which is due to 
the fact that we only assumed correlation in AD for the less relevant fuels. For road transport 
and the other sector the impact is visible, although very small. From this we conclude that the 
error correlations in AD and EF are of limited importance, irrespective of their exact values. 
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Figure 7: PDF of emissions of CO2 (kg/yr) for different sectors resulting from a Monte Carlo 

simulation (N=2000). 

3.2 Country-level uncertainties 

The results from the Monte Carlo for the country-level annual emissions (UK only) in EDGAR 
are shown in Figure 8. The normalized standard deviation for the OtherStatComb sectors 
(upper panel) is estimated at 0.07 (representing 12.7 % uncertainty). For RoadTransport 
(lower panel) the normalized standard deviation resulting from the Monte Carlo simulation is 
about 0.03 (representing 5.5 % uncertainty). For countries with less well-developed statistical 
infrastructure the uncertainties are larger – for OtherStatComb the relative standard deviation 
is around 0.15. For RoadTransport there is a strong difference between countries, with often 
values around 0.04-0.06, but with quite some outliers up to 0.15-0.18. Some values can be 
slightly different from the reported values as global approach starts only from two country 
types – with well- and less well-developed statistical infrastructure, and also there might be 
small inconsistencies in emission budgets – for the global approach global emission flux map 
is used and then flux values are translated into emission mass and summed according country 
masks which also can have minor inaccuracies. 

Since the UK is also part of the European emissions dataset we can compare the results from 
both datasets. With the European data we find normalized standard deviations of 1.9% for the 
OtherStatComb sector and of 0.3% for the RoadTransport sector. Although this seems quite 
low the UK reports uncertainties of 2% in each sub-sector of the RoadTransport group and in 
the Monte Carlo simulation this results in an aggregated uncertainty which is a bit lower then 
this by partly compensating sub-sectors. So the results are in line with their own reported 
uncertainties. 
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Figure 8: Distribution of CO2 emissions resulting from the Monte Carlo simulation (N = 14110, 

no error correlations) for the OtherStatComb (upper) and RoadTransport (lower) grouped 
sectors for the UK. 

Figure 9 shows the normalized spread in total country-level emissions for the European 
emissions (including small sectors not part of the Monte Carlo). For CO2 we generally see a 
very small range of just a few percent. For CO and NOx the spread is larger and more skewed 
with more high values. This is the result of the EF uncertainties with are often strongly 
lognormal. We assumed no error correlations between AD and EF here. 

The results from the error propagation method are also illustrated with red dots showing the 
95% confidence interval. The ranges and order of magnitude look similar and clearly follow 
the variability between countries that is also visible from the Monte Carlo simulation. Especially 
the lower limits show some stronger deviations. From this we can conclude that the Monte 
Carlo has added value over normal error propagation, which in absence of error correlations 
should be attributed to a better representation of different error distributions. Nevertheless, the 
simple approach gives reasonable results. 
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Figure 9: Normalized spread in emissions of CO2, CO and NOx for European countries 
resulting from a Monte Carlo simulation (N=2000, no error correlations) and the 95% 

confidence interval as calculated from the error propagation method (red dots). 

3.3 Spatial errors 

As mentioned before we are unable to make a large ensemble for the European gridded 
emissions at the level of detail required to test the method. Therefore, we do a Monte Carlo 
simulation for the Dutch road transport sector with an ensemble size of N = 200. We compare 
the results against the error propagation method, from which we also create an ensemble 
using the Monte Carlo simulation with aggregated uncertainties and the averaged proxy map. 
The reason is that we have a relatively small ensemble size (N=200) to reduce computational 
expenses and this may not be sufficient to compare to the error propagation method directly. 
Moreover, the inverse modellers may want to create an ensemble of possible emission input 
maps for their models from the aggregated errors and this should be similar to the ensemble 
from the detailed Monte Carlo. 

When perturbing the spatial proxy maps the sum of all fractions may no longer add up to 1 per 
country. We have tested the importance of correcting for this, but we found that given the 
relatively small correlation lengths these deviations have a negligible impact on the country-
level emissions, except maybe for very small countries. 

A first test is to compare the standard deviation in the emissions of each pixel in the two 
ensembles. The result is shown in Figure 10. We see a strong correlation in the standard 
deviation per grid cell. This suggests that the error propagation method gives a good estimate 
of the overall grid cell uncertainty and variations between grid cells. Moreover, when we sum 
emissions from all grid cells we get a standard deviation that is similar to the country-level 
uncertainty for this sector.  
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Figure 10: Scatter plot of standard deviation per pixel with road transport emissions (N = 1099) 
in the ensemble resulting from the detailed Monte Carlo simulation (x-axis) and the Monte 

Carlo simulation with aggregated uncertainties from the error propagation method (y-axis). 

Next, we look at the error correlation length in the aggregated sector emissions. We calculate 
the correlation coefficient between two grid cells from the full Monte Carlo ensemble (i.e. the 
larger the correlation coefficient the stronger the perturbations in those grid cells are 
correlated). The average correlation coefficient per grid cell distance (6 km) is shown in Figure 
11. From the error propagation method we estimate an average correlation length of 
approximately 24 km for road transport (dashed vertical line in Figure 11). This matches well 
with the decay in the correlation coefficient. 

 

Figure 11: The average correlation coefficient between pixels at certain distance from each 
other, as calculated from the detailed Monte Carlo ensemble. 
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4 Conclusion and discussion 

In this report we describe different approaches to calculate the prior emission uncertainty. 
Although the Monte Carlo approach is more flexible when error correlations and non-Gaussian 
errors are present, the more simple error propagation method mimics the aggregated errors 
and variability between sectors, countries and pixels well. 

The uncertainties in country-level emissions are not necessarily accurate. Often IPCC 
guidelines are followed to calculate these uncertainties, containing several assumptions and 
generalisations. Also for the air pollutants the uncertainty ranges for emission factors are often 
based on expert judgement. Although for specific technologies measurements may be 
available, it is difficult to get a better foundation for these numbers. Nevertheless, the 
uncertainties are well-documented, which makes this work easier to repeat for other datasets 
and that is a major advantage of using these data. TNO aims to improve the uncertainty 
estimate for some major sectors, especially for CO and NOx, but this is outside the scope of 
this project. 

The uncertainties in proxy maps are even more difficult to estimate. Unfortunately, data on the 
underlying datasets is often lacking. Some datasets are processed to serve as a better proxy 
for a particular sector and it is very difficult to validate these spatial patterns. We believe it is 
important to develop a standard to estimate these uncertainties, but we realize that with the 
large amount of data this may be too challenging. Nevertheless, we will try to work on this 
further in the coming years. 

This work is surrounded by uncertainties, both in the input data and in the methodology (e.g. 
assumptions). Unfortunately, validation of our results is extremely difficult. We believe that the 
uncertainties in the country-level emissions of CO2 are rather accurate for most developed 
countries, as the uncertainties in itself are small. However, for co-emitted species we use one 
uncertainty range for the emission factor of all countries. Since these ranges are often 
lognormal, high EF values can occur in an ensemble, which are probably unrealistic in 
developed countries with state-of-the-art technologies. How much this affects the final result 
is difficult to estimate, since we do not have a better estimate for the uncertainty range in 
developed countries. The uncertainty in the spatial distribution is likely to be underestimated, 
since we ignore the proxy quality error and assume the representativeness error only to affect 
the correlation length and not the total error per pixel. I addition, for the global approach it is 
important to remember that a methodology suitable for some countries can be less suitable 
for others, e.g. on different continents. 

Next year further work will be done to extend the number of sectors for which spatial 
uncertainty data is provided. Moreover, we will include temporal errors and error correlations 
as well to allow for temporal downscaling of the emissions. We will also consider what to do 
with the aggregated proxy map uncertainty when different pollutants have very different shares 
(e.g. for CO residential wood combustion is a dominant process with a much larger spatial 
uncertainty than natural gas usage). 

The uncertainty product is a good step towards a full quantification of prior emission 
uncertainties, which is already a huge improvement compared to the back-of-the-envelope 
calculations that are now often used to estimate uncertainties for inverse modelling studies. It 
will provide a better basis for the MVS capacity. 
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Appendix A: Overview EDGAR sectors 

Table 4: Overview of sectors part of the EDGAR emissions, including sub-sectors and related 
IPCC activities (to match uncertainties). 

Nr EDGAR 
sector  

EDGAR sub-sector 
[nr. non-zero unc/ 
total sub-sectors] 

IPCC2006 activity Note 

1 AGS [2/4] – 2 budgets: 3.C.2, 
3.C.3 

3.C.2, 3.C.3, 3.C.4, 3.C.7  

2 CHE [9/14] – 1 budget: 2.B 2.B.1, 2.B.2, 2.B.3, 
2.B.4_CPR, 2.B.4_GLA, 
2.B.4_GLL, 2.B.5, 2.B.6, 
2.B.8.a, 2.B.8.b, 2.B.8.c, 
2.B.8.d, 2.B.8.e, 2.B.8.f 

2.B (sum of 9 sub-
sectors) 

3 ENE 
(ENEa, 
ENEs) 

[1/1] – 1 budget: 1.A.1.a 1.A.1.a Divide ENE to 
ENEa and ENEs 
based on pixel 
flux threshold. 

4 IND [1/1] – 1 budget: 1.A.2 1.A.2 Compare 
difference 
between map and 
EXCEL budgets. 

5 IRO [2/2] – combined budget: 
IRO+NFE 

2.C.1, 2.C.2  

6 NEU [2/3] – combined budget: 
NEU+PRU_SOL 

2.D.1, 2.D.2, 2.D.4  

7 NFE [4/5] – combined budget: 
IRO+NFE 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 
2.C.7 

 

8 NMM [4/4] – 4 budgets: 2.A.1, 
2.A.2, 2.A.3, 2.A.4 

2.A.1, 2.A.2, 2.A.3, 2.A.4  

9 PRO [11/17] – 3 budgets: 
1.B.1, 1.B.2_PRO, 1.C 

1.B.1.a.i.1, 1.B.1.a.i.2, 
1.B.1.a.i.3, 1.B.1.a.ii.1, 
1.B.1.a.ii.2, 1.B.2.a.ii, 
1.B.2.a.iii.2, 1.B.2.a.iii.3, 
1.B.2.b.ii, 1.B.2.b.iii.2, 
1.B.2.b.iii.4_STR, 
1.B.2.b.iii.4_TRN, 
1.B.2.b.iii.5, 1.C.1.a_PIP, 
1.C.1.a_SHP, 
1.C.2.a_INJ, 1.C.2.a_STR 

1.B.1 (sum of 3 [5] 
sub-sectors); 
1.B.2_PRO (sum 
of 7 [8] sub-
sectors) = 1.B.2 – 
1.B.2_REF; 
1.C (sum of 1 [4] 
sub-sectors) = 
PRO – 1.B.1 – 
1.B.2_PRO. 

10 PRU_SO
L 

[1/5] – combined budget: 
NEU+PRU_SOL 

2.D.3, 2.E.1, 2.E.5, 2.F, 
2.G 

 

11 RCO [1/4] – 1 budget: 1.A.4 1.A.4, 1.A.5.b.ii, 1.A.5.a, 
1.A.5.b.i 

! RCO has 
1.A.5.b.ii (and 
1.A.5.a, 1.A.5.b.i) 
with zero unc – 
might be part of 
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available budget 
1.A.5 

12 REF_TR
F 

[4/7] – 2 budgets: 
1.A.1.bc, 1.B.2_REF 

1.A.1.b, 1.B.2.a.iii.4, 
1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 
1.B.2.a.iii.6, 1.B.2.b.iii.3 

1.A.1.bc (sum of 
2[2] sub-sectors); 
1.B.2_REF (sum 
of 2 [3] sub-
sectors) = 
REF_TRF – 
1.A.1.bc; 
! REF_TRF has 
1.A.5.b.iii with 
zero unc – might 
be part of 
available budget 
1.A.5 

13 SWD_IN
C 

[1/1] – 1 budget: 4.C 4.C  

14 TNR_avi
_CDS 

[1/1] – combined budget: 
CDS+CRS+LTO 

1.A.3.a_CDS  

15 TNR_avi
_CRS 

[1/1] – combined budget: 
CDS+CRS+LTO 

1.A.3.a_CRS  

16 TNR_avi
_LTO 

[1/1] – combined budget: 
CDS+CRS+LTO 

1.A.3.a_LTO  

17 TNR_Ot
her 

[2/3] – 2 budgets: 
1.A.3.c, 1.A.3.e 

1.A.3.c, 1.A.3.e_OFF, 
1.A.3.e_PIP 

 

18 TNR_Shi
p 

[1/1] – 1 budget: 1.A.3.d 1.A.3.d  

19 TRO [1/1] – 1 budget: 
1.A.3.b_noRES 

1.A.3.b  

 

Appendix B: User guidelines 

The European uncertainty data is delivered as a NetCDF file following a similar format as the 
emission data. Information is provided on the domain (latitude, longitude), countries, 
pollutants, sectors and source type (area or point). All data is aggregated into the six source 
sectors listed in Table 2. 

The variable ‘emissions’ contains the emissions per country, pollutant and sector. This variable 
contains all countries and sea regions part of the domain covered by the emission dataset. 
The uncertainty is given by the variable ‘unc_emis’, which follows the same structure as the 
emissions. The uncertainty is a relative standard deviation. This value is zero when we lack 
information, which is mostly true for sea regions and some country-sector combinations which 
have no emissions at all. When working with these data it means that those particular country-
pollutant-sector combinations receive no uncertainty and thus the emissions are constant. 

Spatial data are presented as a list of sources, similar to the emission data. Each source in 
this list has a specific location, country, sector and source type. The variable ‘distribution’ 
describes the spatial distribution of emissions for each pollutant and consists of fractions which 
for each country-pollutant-sector combination should add up to one. When multiplying these 
values with the corresponding emissions it gives the original emission data. Uncertainties 
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related to the spatial proxies are represented by the variable ‘unc_dist’ and again the 
uncertainty is a relative standard deviation. There is only one list of uncertainties, which is 
based on CO2 as was discussed before. Finally, the variable ‘corr_length’ gives the spatial 
correlation length for each aggregated sector. The unit of the correlation length is the number 
of grid cells in the native grid resolution of 1/10 x 1/20 degrees. 

Important to note is that we only include the two sectors for which we have determined spatial 
errors (road transport and other stationary combustion). So the spatial patterns of the other 
sectors need to be taken from the original prior emission dataset. The correlation length is 
zero for sectors which are not included yet for the spatial uncertainties. 

For modellers who might want to create an ensemble of possible emission maps there is 
another important consideration. Since error propagation makes use of Gaussian error 
definitions the uncertainties provided are all relative standard deviations. However, emissions 
may follow lognormal distributions as well, especially for CO and NOx. Therefore, we may 
consider all uncertainties in the emissions larger than 0.05 (5%) to be lognormal and Eq. 11 
can be applied. For the spatial distribution we assume all uncertainties are Gaussian and Eq. 
10 can be applied (also for other Gaussian error distributions). 

The data are available through an FTP site (coco2@ftp.ecmwf.int), following the directory 
structure data-exchange/WP2/D2-6-prior_emission_uncertainties. Please contact the 
CoCO2-Coord to obtain the FTP password access. 
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