

LAND ATMOSPHERE CO₂ FLUXES DRIVEN BY LATERAL PROCESSES

P. Ciais, F. Chevallier, Y. Wang

CoCO2 1st General Assembly

16/11/2021

,

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

• We are interested mainly by carbon transport at long distances

- Lateral C fluxes that have consequences for land atmosphere CO_2 exchange
 - ✓ Crop harvest and processing and commodity transport -
 - ✓ Wood harvest, processing, transport and storage
 - ✓ Biofuels harvest, processing, transport and use

Lateral fluxes

- ✓ Land-Ocean-Atmosphere continuum, including weathering => river loop
- VOCs
- Erosion (wind and water)
- Lateral C fluxes that don't
 - Pyrogenic C cycle
 - Petrogenic C cycle

=> crop products => wood products

=> biofuels } CoCo2 WP2

Amount of C mobilized

Ignoring lateral C fluxes is a cognitive dissonance of carbon cycle research

Crop products

maps

5

IEA fuel data (energy statistics)

- PKU-CO2 spatial patterns of biofuel use
- Woody : Harris et al. 2021 patterns of forest timber removals (woody fuels)
- Croppy : FAO + 1 km MODIS crop cover + MODIS NPP (crop fuels)

FAO < IEA

=> "Missing" woody fuels due to secondary biofuels and "non commercial" biofuel harvest

Perspective

Global biomass trade for energy— Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass

Modeling and Analysis

Global biomass trade for energy – Part 1: Statistical and methodological considerations

Svetlana Proskurina, D Lappeenranta University of Technology, Finland Martin Junginger, Copernicus Institute of Sustainable Development, Utrecht, Netherlands Jussi Heinimö, Mikkeli Development Miksei Ltd, Mikkeli, Finland Esa Vakkilainen, Lappeenranta University of Technology, Finland

IEA provides the production, imports and exports of some categories of biofuels, but they are not separated for wood-origin or crop-origin.

primary solid biofuels	 wood
charcoal	 wood
Rio-gasoline	 crop
bio-gasolille	 crop
biodiesel	 crop
other liquid biofuels	 crop

bio jet kerosene biogases ---- wood & crop & waste (not sure how to separate)
---- not applied

^{2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 2015.0 2017.5}

We compiled data of :

- ✓ River export to ocean
- ✓ Burial
- ✓ Lakes evasion
- \checkmark River evasion
- ✓ CH4-C emissions

At catchment scale

Soil to river export is deduced by mass balance

Annual for 1961-2019, 0.08° × 0.08°

Extended from Deng, Ciais et al., ESSDD, 2021

Biofuels

Annual maps at 8 km resolution since 1980

Mostly climatological, false 0.08° × 0.08°

Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions

Zhu Deng^{1, *}, Philippe Ciais^{2, *}, Zitely A. Tzompa-Sosa², Marielle Saunois², Chunjing Qiu², Chang Tan¹, Taochun Sun¹, Piyu Ke¹, Yanan Cui³, Katsumasa Tanaka^{2,4}, Xin Lin², Rona L. Thompson⁵, Hanqin Tian⁶, Yuanzhi Yao⁶, Yuanyuan Huang⁷, Ronny Lauerwald⁸, Atul K. Jain⁹, Xiaoming Xu⁹, Ana Bastos¹⁰, Stephen Sitch¹¹, Paul I. Palmer^{12,13}, Thomas Lauvaux², Alexandre d'Aspremont¹⁴, Clément Giron¹⁴, Antoine Benoit¹⁴, Benjamin Poulter¹⁵, Jinfeng Chang¹⁶, Ana Maria Roxana Petrescu¹⁷, Steven J. Davis¹⁸, Zhu Liu¹, Giacomo Grassi¹⁹, Clément Albergel²⁰, and Frédéric Chevallier²

Science Discussions Discussions

Correcting inversions fluxes -> inversions C stock changes to make them comparable with inventories

$F_{adj}^{thr} = F_{ML}^{thr} - F_{tot}^{trr} - F_{ant}^{trr} - F_{ant}^{wood} - F_{ant}^{wood} + F_{ant}^{trr} \Leftrightarrow I$	Fant
--	------

