"This presentation reflects the views only of the author(s), and the Commission cannot be held responsible for any use which may be made of the information contained therein."

WP8: Examples of hot spot and city GHG emission budgets through observational methods

Roxana Petrescu, Han Dolman, Sander Houweling & WP8 Vrije Universiteit Amsterdam, The Netherlands 06/10/2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

T8.3 Engagement with user communities (policy, industry and others)

Compilation of a catalogue of published studies on hot spot detection of emissions for CO_2 (cities, power plants) and CH_4 (gas leaks etc.) to assist at local scale cities and regional councils in implementing plans for CO_2 emission reductions.

Background information

Hot spot detection of emissions uses independent satellite observations

(e.g. Orbiting Carbon Observatory-2 (**OCO-2**) for CO₂, Sentinel-5 Precursor (**S5P**) for NO₂, Greenhouse gases Observing SATellite (**GOSAT**) CO₂ and CH₄, TROPOspheric Monitoring Instrument (**TROPOMI**) for CH₄ and N₂O, **GHG-Sat, PRISMA, SCIAMACHY/ENVISAT** and **TANSO-FTS/GOSAT** for CH₄, Sentinel 2 Multi Spectral Instrument (**MSI**) for CH₄)

to evaluate the inventory representations of emissions linked to a transport models (e.g. X-STILT, COSMO-GHG) to account for atmospheric transport and link emissions to observations.

Mapping of some existing studies on hot-spot GHG detection

Preliminary results CO₂ hot spot detection

Representation of CO₂ activities detected by satellites and their locations

Locations

Preliminary results CH₄ hot spot detection

Summary of CH₄ activities detected by satellites and their locations

Case study 1: Space-based observations of megacity CO₂ Kort et al., <u>https://doi.org/10.1029/2012GL052738</u>

Satellite: GOSAT

Aim: To demonstrate the potential of satellite instruments to provide accurate global monitoring of megacity CO₂ emissions using GOSAT observations Period: June 2009 to August 2010

Country/city: USA, Los Angeles

- Two observations were selected
- Clear indication of seasonality is detected
- Persistent enhancement is found to be 3.2 ± 1.5 (1σ) ppm in line with previous ground based observations on anthropogenic sources

Question remains on the source attribution!

Observed X_{CO2} urban dome of Los Angeles from June 2009 to August 2010.

Case study 2: Observing CO₂ emissions over China's cities and industrial areas Zheng et al., 2020: <u>https://doi.org/10.5194/acp-20-8501-2020</u>

Satellite: OCO-2 Aim: Quantifies CO₂ anthropogenic emissions at a large spatial extent over China's cities Period: September 2014 and August 2019 Country/city: China / Anshan

Quantification of CO₂ emissions corresponding to the 60 CO₂ plumes selected from the 5-year OCO-2 archive compared to the corresponding source emissions given by MEIC (The average of satellite-based estimates is 27.1 % higher than the MEIC values in the cold season while it is 5.2 % lower in the warm season)

Case study 2 (cont.)

Extrapolation of the satellite-based CO₂ hourly fluxes to annual total fluxes using emission time profiles, and comparison to two global bottomup emission maps: ODIAC (Oda and Maksyutov, 2015; Oda et al., 2018) and EDGAR v4.3.2 (Janssens-Maenhout et al., 2019).

Conclusions:

- Conservative selection of the satellite data that can be safely exploited for emission quantification.
- Future developments could aim at using detailed regional atmospheric transport models (refining the data selection, improving the estimation of wind speed or the description of the plume footprint).
- The need for a good knowledge of the emission space-time patterns (not only the emission values) will therefore remain for the comparison between the national inventories and the satellite-based estimates. To assist non-Annex I parties with verification of their submissions, an incremental approach where both bottom-up and top-down estimates are developed together in parallel.

Case study 3: Satellite detect extreme CH₄ leakage from a natural gas well blowout Pandey et al, 2019: <u>https://www.pnas.org/content/116/52/26376</u>

Satellite: TROPOMI Task: Detection of gas leakages due to accidents in the oil and gas sector Period: February – March 2018 Country / state: USA, Ohio

- CH₄ emission from this event were detected by TROPOMI instrument and quantified by measuring the CH₄ concentrations before, during and after the blowout.
- the Weather Research and Forecasting (WRF) model was used to enable investigating the atmospheric dispersion of the CH₄ plume at the overpass time of TROPOMI.

Case study 3 (cont.)

Comparison with previously known accidental and regional emissions across the US O&G sector and EU countries were performed.

Conclusion:

- Lack of incorporating accidental emissions in regional- and national-scale emission reporting and inventories, lead to significant underestimation of overall emissions.
- Detection and quantification of an accidental emission from a satellite during routine operations demonstrates the unique value of satellite remote sensing, and the TROPOMI instrument in particular.

Complementary research

- ICOS PAUL
- Newly funded project aiming to evaluate available and develop novel observational approaches, and implement an integrated and comprehensive concept for a city observatory.
- Links to previous Indianapolis USA experiments to lower uncertainty in area/regional GHG flux measurements through improved measurement techniques, comparison to inventory data, and use of carbon isotope ratio data (*The INdianapolis Flux Experiment (INFLUX): Toward Improved Capabilities in Urban-Area Scale Greenhouse Gas Flux Measurements*)

Atmospheric Inversion

Fluxes + Uncertaintie

Mix of approaches

- \bigcirc Aircraft-based flux measurements for both CO₂ and CH₄;
- Tower-based fluxes;
- ¹⁴C measurements and flask sampling;
- Regional modeling/inverse analysis;
- Vulcan/Hestia modeling.

Complementary research

 Observing system simulation experiments (OSSEs) experiments within the CHE project
<u>https://www.che-project.eu/index.php/resources</u>
Studies on Berlin, Shanghai and Beijing

Figure 3: Largest XCO2 enhancement found observed by OCO-2 (left) and OCO-3 (right) downwind of Beijing as of August 2020.

Estimating the performance of CO₂M over cities: CHE and ongoing CoCO₂ WP4

Kuhlmann et al., 2019 <u>https://amt.copernicus.org/articles/12/6695/2019/</u> Berlin power stations

Kuhlmann et al., 2020 <u>https://doi.org/10.5194/amt-13-6733-2020</u> : Berlin city Lespinas et al., 2020

https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-020-00153-4

Plume Monitoring Inversion Framework (PMIF) global inversion system

Complementary research

- The use of ¹⁴C and other coemitters (NO₂, CO) to separately address the anthropogenic CO₂ component: CoCO₂ WP4
- To be able to separate between the anthropogenic and biogenic signal and to attribute emissions to sources/sectors, satellite information need to be combined with ground-based observations.

Kuhlmann 2020-2021:

SMARTCARB: Synthetic XCO₂, CO and NO₂ observations for the CO₂M and Sentinel-5 satellites

SMARTCARB-2: Use of satellite measurements of auxiliary reactive trace gases for fossil fuel carbon dioxide emission estimation <u>https://zenodo.org/record/4674167#.YVQkzJ0</u> <u>zbIU</u>

Figure 2.11: Comparing plume detection using CO₂ observations with low noise ($\sigma_{VEG50} = 0.5 \text{ ppm}$) and (b) NO₂ observations with high noise ($\sigma_{ref} = 2 \times 10^{15} \text{ cm}^{-2}$). For each detected plume, the figure shows detected pixels, plume center line and polygons used in the mass-balance approach. The triangular marker shows the location of the source and the wind direction in the model field.

Thanks for your attention!!! a.m.r.petrescu@vu.nl

With support from:

CO2 Monitoring Task Force

External Expert Group

Inventory Agency Advisory Board

CoCO2 reviewers

REA

Period: January 2021 – December 2023

